Skip to main content

Harvesting of Microalgae for Biofuels: Comprehensive Performance Evaluation of Natural, Inorganic, and Synthetic Flocculants

  • Chapter
  • First Online:
Green Technologies and Environmental Sustainability

Abstract

Microalgal biomass is considered as one of the most suitable alternative feedstocks for the renewable biofuels. Microalgae have several advantages such as ability to grow in harsh environment, comparatively very high productivity, and high lipid contents. Due to such potentials, microalgal biomass is preferred over the convention biofuel feedstocks. The concentration of microalgal biomass typically ranged between 0.5 and 1 kg/m3 in the raceways or open pond type cultivation systems and around 5–10 kg/m3 in the closed photobioreactor-type cultivation systems. The bottleneck of the algal biofuels is the harvesting of microalgae biomass from diluted culture media. Irrespective of the density of the algal biomass, the water content in microalgal culture exceeds 99% that makes the separation process lengthy and energy intensive. This largely determines the economic viability of microalgae-based biofuels and by-products. Among various techniques used for the harvesting of microalgal biomass, coagulation and flocculation have been found very effective and inexpensive; however, the choice of the coagulant depends on the use of harvested biomass for desired end products. The success of microalgae harvesting by flocculation requires thorough understanding about the nature of the flocculants, its molecular weight, mode of interaction, etc., along with the understanding about the algae species to be harvested. Harvesting of microalgae by coagulation and flocculation has its own advantages and disadvantages; however, being simple and cost-effective, it is one of most preferred techniques especially if the biomass is used for biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F (2015) Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery. Bioresour Technol 179:559–564

    Article  Google Scholar 

  • Ayoub GM, Lee S, Koopman B (1986) Seawater induced algal flocculation. Water Res 20(10):1265–1271

    Article  Google Scholar 

  • Balasubramani R, Gupta SK, Cho WM, Kim JK, Lee SR, Jeong KH, Lee DJ, Choi HC (2016) Microalgae potential and multiple roles—current progress and future prospects—an overview. Sustainability 2015(8):1–16. doi:10.3390/su8121215

    Google Scholar 

  • Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydr Polym 92(1):675–681

    Article  Google Scholar 

  • Batan LY, Graff GD, Bradley TH (2016) Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresour Technol 219:45–52

    Article  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–125

    Article  Google Scholar 

  • Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324

    Article  Google Scholar 

  • Borges L, Morón-Villarreyes JA, D’Oca MGM, Abreu PC (2011) Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenergy 35(10):4449–4454

    Article  Google Scholar 

  • Brady PV, Pohl PI, Hewson JC (2014) A coordination chemistry model of algal autoflocculation. Algal Res 5:226–230

    Article  Google Scholar 

  • Bratby J (2006) Coagulation and flocculation in water and wastewater treatment. IWA Publishing, London

    Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067

    Article  Google Scholar 

  • Buelna G, Bhattarai KK, De la Noue J, Taiganides EP (1990) Evaluation of various flocculants for the recovery of algal biomass grown on pig-waste. Biol Wastes 31(3):211–222

    Article  Google Scholar 

  • Chang YR, Lee DJ (2012) Coagulation–membrane filtration of Chlorella vulgaris at different growth phases. Dry Technol 30:1317–1322

    Article  Google Scholar 

  • Chang Z, Duan P, Xu Y (2015) Catalytic hydropyrolysis of microalgae: influence of operating variables on the formation and composition of bio-oil. Bioresour Technol 184:349–354

    Article  Google Scholar 

  • Cheng YL, Juang YC, Liao GY, Ho SH, Yeh KL, Chen CY, Chang JS, Liu JC, Lee DJ (2010) Dispersed ozone flotation of Chlorella vulgaris. Bioresour Technol 101:9092–9096

    Article  Google Scholar 

  • Choi HJ (2015) Effect of eggshells for the harvesting of microalgae species. Biotechnol Biotechnol Equip 2818:1–7

    Google Scholar 

  • Choi HJ (2016) Application of methyl-esterified sericite for harvesting microalgae species. J Environ Chem Eng 4(3):3593–3600

    Article  Google Scholar 

  • Choi JH, Shin WS, Lee SH, Joo DJ, Lee JD, Choi SJ et al (2001) Application of synthetic polyamine flocculants for dye wastewater treatment. Sep Sci Technol 36:2945–2958

    Article  Google Scholar 

  • Coons JE, Kalb DM, Dale T, Marrone BL (2014) Getting to low-cost algal biofuels: a monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Res 6:250–270

    Article  Google Scholar 

  • Di Termini I, Prassone A, Cattaneo C, Rovatti M (2011) On the nitrogen and phosphorus removal in algal photobioreactors. Ecol Eng 37(6):976–980

    Article  Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  Google Scholar 

  • Duan P, Savage PE (2010) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50(1):52–61

    Article  Google Scholar 

  • Edzwald JK (2010) Dissolved air flotation and me. Water Res 44:2077–2106

    Article  Google Scholar 

  • Eldridge RJ, Hill DRA, Gladman BR (2012) A comparative study of the coagulation behaviour of marine microalgae. J Appl Phycol 24:1667–1679

    Article  Google Scholar 

  • Farid MS, Shariati A, Badakhshan A, Anvaripour B (2013) Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol 131:555–559

    Article  Google Scholar 

  • Farooq W, Lee YC, Han JI, Darpito CH, Choi M, Yang JW (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15(3):749–755

    Article  Google Scholar 

  • Gargano I, Marotta R, Andreozzi R, Olivieri G, Marzocchella A, Spasiano D, Pinto G, Pollio A (2016) Alkaline direct transesterification of different species of Stichococcus for bio-oil production. New Biotechnol 33:797–806

    Article  Google Scholar 

  • Garzon-Sanabria AJ, Ramirez-Caballero SS, Moss FE, Nikolov ZL (2013) Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsis salina flocculation efficiency. Bioresour Technol 143:231–237

    Article  Google Scholar 

  • Gerde JA, Yao L, Lio J, Wen Z, Wang T (2013) Microalgae flocculation: impact of flocculant type, algae species and cell concentration. Algal Res 3:30–35

    Article  Google Scholar 

  • González-Fernández C, Ballesteros M (2013) Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. J Appl Phycol 25(4):991–999

    Article  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726

    Article  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7):491–515

    Article  Google Scholar 

  • Guldhe A, Singh B, Rawat I, Permaul K, Bux F (2015) Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel 147:117–124

    Article  Google Scholar 

  • Guldhe A, Misra R, Singh P, Rawat I, Bux F (2016) An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes. Algal Res 19:292–298. doi:10.1016/j.algal.2015.08.014

    Article  Google Scholar 

  • Guldhe A, Singh P, Ansari FA, Singh B, Bux F (2017) Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel 187:180–188

    Article  Google Scholar 

  • Gupta SK, Kumar M, Guldhe A, Ansari FA, Rawat I, Kanney K, Bux F (2014) Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Convers Manag 85:537–544

    Article  Google Scholar 

  • Gupta SK, Kumar NM, Mishra R, Ansari FA, Dionysios DD, Maity A, Bux F (2016) Synthesis and performance evaluation of a new polymeric composite for the treatment of textile wastewater. Ind Eng Chem Res 55(1):13–20

    Article  Google Scholar 

  • Gutiérrez R, Passos F, Ferrer I, Uggetti E, García J (2015) Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res 9:204–211

    Article  Google Scholar 

  • Hallenbeck PC, Grogger M, Mraz M, Veverka D (2016) Solar biofuels production with microalgae. Appl Energy 179:136–145

    Article  Google Scholar 

  • Hamid SHA, Lananan F, Din WNS, Lam SS, Khatoon H, Endut A, Jusoh A (2014) Harvesting microalgae, Chlorella sp. by bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. Int Biodeter Biodegr 95:270–275

    Article  Google Scholar 

  • Harith ZT, Yusoff FM, Mohamed MS, Din MS, Ariff AB (2009) Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans cells. Afr J Biotechnol 8:5971–5978

    Article  Google Scholar 

  • Henderson RK, Parsons SA, Jefferson B (2008) Successful removal of algae through the control of zeta potential. Sep Sci Technol 43(7):1653–1666

    Article  Google Scholar 

  • Henderson RK, Parsons SA, Jefferson B (2010) The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res 44(12):3617–3624

    Article  Google Scholar 

  • Hu YR, Guo C, Wang F, Wang SK, Pan F, Liu CZ (2014) Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chem Eng J 242:341–347

    Article  Google Scholar 

  • Ives KJ (1959) The significance of surface electric charge on algae in water purification. J Biochem Microbiol Technol Eng 1(1):37–47

    Article  Google Scholar 

  • Kawaroe M, Prartono T, Sunuddin A, Saputra D (2016) Marine microalgae Tetraselmis suecica as flocculation agent of bio-flocculation method. HAYATI J Biosci 23(2):62–66. doi:10.1016/j.hjb.2015.09.003

    Article  Google Scholar 

  • Kim DY, Oh YK, Park JY, Kim B, Choi SA, Han JI (2015) An integrated process for microalgae harvesting and cell disruption by the use of ferric ions. Bioresour Technol 191:469–474

    Article  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313

    Article  Google Scholar 

  • Kumar S (2013) Sub-and supercritical water technology for biofuels. In: Advanced biofuels and bioproducts. Springer, New York, pp 147–183

    Google Scholar 

  • Lama S, Muylaert K, Karki TB, Foubert I, Henderson RK, Vandamme D (2016) Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation. Bioresour Technol 220:464–470

    Article  Google Scholar 

  • Lananan F, Yunos FHM, Nasir NM, Bakar NSA, Lam SS, Jusoh A (2016) Optimization of biomass harvesting of microalgae, Chlorella sp. utilizing auto-flocculating microalgae, Ankistrodesmus sp. as bioflocculant. Int Biodeter Biodegr 113:391–396

    Article  Google Scholar 

  • Lee SJ, Kim SB, Kim JE, Kwon GS, Yoon BD, Oh HM (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27(1):14–18

    Article  Google Scholar 

  • Lei X, Chen Y, Shao Z, Chen Z, Li Y, Zhu H, Zhang J, Zheng W, Zheng T (2015) Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. Bioresour Technol 198:922–925

    Article  Google Scholar 

  • Ma FR, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  Google Scholar 

  • Ma J, Lei GY, Fang JY (2007) Effect of algae species population structure on their removal by coagulation and filtration processes – a case study. J Water Supply Res Technol AQUA 56:41–54

    Article  Google Scholar 

  • McGarry MG (1970) Algal flocculation with aluminum sulfate and polyelectrolytes. J Water Pollut Control Fed 42:R191–R201

    Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197

    Article  Google Scholar 

  • Molina GE, Belarbi EH, Acien FFG, Robles MA, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Morales J, De La Noüe J, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquacult Eng 4(4):257–270

    Article  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Article  Google Scholar 

  • Ndikubwimana T, Zeng X, Liu Y, Chang JS, Lu Y (2014) Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res 6:186–193

    Article  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  Google Scholar 

  • Pahl SL, Lee AK, Kalaitzidis T, Ashman PJ, Sathe S, Lewis DM (2013) Harvesting, thickening and dewatering microalgae biomass. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 165–185

    Chapter  Google Scholar 

  • Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22(3):349–355

    Article  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  Google Scholar 

  • Pearsall RV, Connelly RL, Fountain ME, Hearn CS, Werst MD, Hebner RE, Kelley EF (2011) Electrically dewatering microalgae. IEEE Trans Dielectr Electr Insul 2011(18):1578–1583

    Article  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin 3:431–440

    Article  Google Scholar 

  • Prochazkova G, Kastanek P, Branyik T (2015) Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer’s yeast. Bioresour Technol 177:28–33

    Article  Google Scholar 

  • Rashid N, Rehman SU, Han J-I (2013) Rapid harvesting of freshwater microalgae using chitosan. Process Biochem 48:1107–1110

    Article  Google Scholar 

  • Rawat I, Gupta SK, Srivastav A, Singh P, Kumari S, Bux F (2016) Microalgae applications in wastewater treatment. In: Bux F, Chisti Y (eds) Algae biotechnology: products and processes. Springer International, New York, pp 249–268. doi:10.1007/978-3-319-12334-9_13. ISBN 978-3-319-12334-9

    Chapter  Google Scholar 

  • Riaño B, Molinuevo B, García-González MC (2012) Optimization of chitosan flocculation for microalgal-bacterial biomass harvesting via response surface methodology. Ecol Eng 38:110–113

    Article  Google Scholar 

  • Roselet F, Vandamme D, Roselet M, Muylaert K, Abreu PC (2015) Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Res 10:183–188

    Article  Google Scholar 

  • Rossignol N, Vandanjon L, Jaouen P, Quemeneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultra-filtration. Aquacult Eng 20:191–208

    Article  Google Scholar 

  • Rwehumbiza VM, Harrison R, Thomsen L (2012) Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J 200:168–175

    Article  Google Scholar 

  • Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol 49:463–468

    Article  Google Scholar 

  • Schlesinger A, Eisenstadt D, Bar-Gil A, Carmely H, Einbinder S, Gressel J (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv 30:1023–1030

    Article  Google Scholar 

  • Sharma YC, Singh B, Korstad J (2011) A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chem 11:2993–3006

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from algae, NREL/TP-580-24190, National Renewable Energy Laboratory, Golden, CO, pp 1–328

    Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. Technion Research and Development Foundation, Haifa, Israel

    Book  Google Scholar 

  • Shin JY, Spinette RF, O’melia CR (2008) Stoichiometry of coagulation revisited. Environ Sci Technol 42(7):2582–2589

    Article  Google Scholar 

  • Show, K. Y., Lee, D. J., & Chang, J. S. (2013). Algal biomass dehydration. Bioresource technology, 135, 720–729

    Google Scholar 

  • Shriwastav A, Gupta SK, Ansari FA, Rawat I, Bux F (2014) Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol 174:60–66

    Article  Google Scholar 

  • Sirin S, Trobajo R, Ibanez C, Salvad J (2012) Harvesting the microalgae Phaeodactylumtricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 24:1067–1080

    Article  Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation—verification and proposed mechanism. Biotechnol Bioeng 26(2):142–147

    Article  Google Scholar 

  • Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in brackish and sea waters. Biomass 15(3):187–199

    Article  Google Scholar 

  • Teixeira CMLL, Kirsten FV, Teixeira PCN (2012) Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol 24:557–563

    Article  Google Scholar 

  • Tenney MW, Echelberger WF Jr, Schuessler RG, Pavoni JL (1969) Algal flocculation with synthetic organic polyelectrolytes. Appl Microbiol 18:965–971

    Google Scholar 

  • Toraman HE, Franz K, Ronsse F, Geem KMV, Marin GB (2016) Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer. J Chromatogr A 1460:135–146

    Article  Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48:251–259

    Article  Google Scholar 

  • ‘t Lam GP, Vermuë MH, Olivieri G, van den Broek LAM, Barbosa MJ, Eppink MHM, Wijffels RH, Kleinegris DMM (2014) Cationic polymers for successful flocculation of marine microalgae. Bioresour Technol 169:804–807

    Google Scholar 

  • Udom I, Zaribaf BH, Halfhide T, Gillie B, Dalrymple O, Zhang Q, Ergas SJ (2013) Harvesting microalgae grown on wastewater. Bioresour Technol 139:101–106

    Article  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renewable Sustainable Energy 2(1):012701

    Article  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22(4):525–530

    Article  Google Scholar 

  • Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012a) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119

    Article  Google Scholar 

  • Vandamme D, Foubert I, Fraeye I, Muylaert K (2012b) Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour Technol 124:508–511

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaer K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239

    Article  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalga. Appl Microbiol Biotechnol 79:707–718

    Article  Google Scholar 

  • Wang Y, Gao B, Yue Q, Zhan X, Si X, Li C (2009) Flocculation performance of epichlorohydrin-dimethylamine polyamine in treating dyeing wastewater. J Environ Manag 91:423–431

    Article  Google Scholar 

  • Wang L, Liang W, Yu J, Liang Z, Ruan L, Zhang Y (2013) Flocculation of Microcystis aeruginosa using modified larch tannin. Environ Sci Technol 47(11):5771–5777

    Article  Google Scholar 

  • Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012a) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    Article  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012b) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    Article  Google Scholar 

  • Xie Q, Addy M, Liu S, Zhang B, Cheng Y, Wan Y, Li Y, Liu Y, Lin X, Chen P, Ruan R (2015) Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel 160:577–582

    Article  Google Scholar 

  • Xu L, Wang F, Li HZ, Hu ZM, Guo C, Liu CZ (2010) Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. J Chem Technol Biotechnol 85(11):1504–1507

    Google Scholar 

  • Xu Y, Purton S, Baganz F (2013) Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour Technol 129:296–301

    Article  Google Scholar 

  • Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y (2010) Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol 101(14):5297–5304

    Article  Google Scholar 

  • Zhang W, Zhao Y, Cui B, Wang H, Liu T (2016) Evaluation of filamentous green algae as feedstocks for biofuel production. Bioresour Technol 220:407–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, S.K., Ansari, F.A., Bauddh, K., Singh, B., Nema, A.K., Pant, K.K. (2017). Harvesting of Microalgae for Biofuels: Comprehensive Performance Evaluation of Natural, Inorganic, and Synthetic Flocculants. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics