Skip to main content

Emerging Aspects of Bioremediation of Arsenic

  • Chapter
  • First Online:
Green Technologies and Environmental Sustainability

Abstract

Arsenic is a toxic element whose widespread contamination in highly populated regions of world has led to environmental and human health concerns. Millions of people residing in contaminated areas are forced to drink water and eat food containing arsenic beyond maximum permissible limits. As the extent of problem is huge, there is need to devise cost-effective measures to tackle the problem. Physicochemical methods available presently are costly and are not easily operable by the poor people. Bioremediation comprises application of biological organisms and/or components in the removal/stabilisation of the contaminant. This review will focus on arsenic removal aspects of bioremediation and will also discuss prospects of utilising biological components for restricting arsenic entry into crop plants specifically rice.

The original version of this chapter was revised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162(1):178–185

    Article  Google Scholar 

  • Baig JA, Kazi TG, Shah AQ, Kandhro GA, Afridi HI, Khan S, Kolachi NF (2010) Biosorption studies on powder of stem of Acacia nilotica: removal of arsenic from surface water. J Hazard Mater 178(1–3):941–948

    Article  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32(1):78–91

    Article  Google Scholar 

  • Banerjee S, Majumdar J, Samal AL, Bhattachariya P, Santra SC (2013) Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. J Environ Sci Toxicol Food Technol 3(1):1–10

    Google Scholar 

  • Bhattacharyya R, Chatterjee D, Nath B, Jana J, Jacks G, Vahter M (2003) High arsenic groundwater: mobilization, metabolism and mitigation—an overview in the Bengal Delta Plain. Mol Cell Biochem 253:347–355

    Article  Google Scholar 

  • Clausen CA (2000) CCA removal from treated wood using a dual remediation process. Waste Manag Res 18(5):485–488

    Article  Google Scholar 

  • Dhankhar R, Hooda A (2010) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491

    Article  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng 96(6):1051–1063

    Article  Google Scholar 

  • Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1096

    Article  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    Article  Google Scholar 

  • Moreno-Jiménez EE, Vázquez S, Carpena-Ruiz RO, Esteban E, Peñalosa JM (2011) Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: A field experiment. J Environ Manag 92:1584–1590

    Article  Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217

    Article  Google Scholar 

  • Fox DI, Thomas P, Yeh DH, Alcantar NA (2012) Removing heavy metals in water: the interaction of cactus mucilage and arsenate (As (V)). Environ Sci Technol 46(8):4553–4559

    Article  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    Article  Google Scholar 

  • Geiszinger A, Goessler W, Pedersen SN, Francesconi KA (2001) Arsenic biotransformation by the brown macroalga, Fucus serratus. Environ Toxicol Chem 20:2255–2262

    Article  Google Scholar 

  • Giri AK, Patel RK, Mahapatra SS, Mishra PC (2013) Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ Sci Pollut Res 20(3):1281–1291

    Article  Google Scholar 

  • Huang JH, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim Cosmochim Acta 70:2023–2033

    Article  Google Scholar 

  • Bundschuh J, Bhattacharya P, Sracek O, Mellano MF, Ramírez AE, Storniolo AR, Martín AR, Cortés J, Litter MI, Jean JS (2011) Arsenic removal from groundwater of the Chaco-Pampean plain (Argentina) using natural geological materials as adsorbents. J Environ Sci Health A 46:1297–1310

    Article  Google Scholar 

  • Kao A-C, Chu Y-J, Hsu F-L, Liao VH-C (2013) Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. J Contam Hydrol 155:1–8

    Article  Google Scholar 

  • Kim M, Um H-J, Bang SB, Lee S-H, Oh S-J, Han J-H, Kim K-W, Min J h, Kim Y-H (2009) Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer. Environ Sci Technol 43(24):9335–9340

    Article  Google Scholar 

  • Krishnaswamy R, Wilson DB (2000) Construction and characterization of an Escherichia coli strain genetically engineered for Ni(II) bioaccumulation. Appl Environ Microbiol 66:5383–5386

    Article  Google Scholar 

  • Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae—A promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  Google Scholar 

  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80

    Article  Google Scholar 

  • Yan L, Yin H, Zhang S, Leng F, Nan W, Li H (2010) Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater 178(1–3):209–217

    Article  Google Scholar 

  • Levy JL, Stauber JL, Adams M, Maher W, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 24(10):2630–2639

    Article  Google Scholar 

  • Lloyd JR, Oremland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2(2):85–90

    Article  Google Scholar 

  • Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9(3):207–215

    Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  Google Scholar 

  • Maity JP, Kar S, Liu JH, Jean JS, Chen CY, Bundschuh J, Santra SC, Liu CC (2011) The potential for reductive mobilization of arsenic [As(V) to As(III)] by OSBH2 (Pseudomonas stutzeri) and OSBH5 (Bacillus cereus) in an oil-contaminated site. J Environ Sci Health A 46(11):1239–1246

    Article  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  Google Scholar 

  • Elless MP, Poynton CY, Willms CA, Doyle MP, Lopez AC, Sokkary DA, Ferguson BW, Blaylock MJ (2005) Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water. Water Res 39:3863–3872

    Article  Google Scholar 

  • Meng X-Y, Qin J, Wang L-H, Duan G-L, Sun G-X, Wu H-L, Chu C-C, Ling H-Q, Barry PR, Zhu Y-G (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191(1):49–56

    Article  Google Scholar 

  • Mirza N, Arshid PA, Qaisar MQ, Shah MM, Shafqat MN (2011) Ecological restoration of arsenic contaminated soil by Arundo donax. Ecol Eng 37(12):1949–1956

    Article  Google Scholar 

  • Mitra N, Zakeri RZ, Ahmad MS, Hosein MGH (2012) Studies of water arsenic and boron pollutants and algae phytoremediation in three springs. Iran Int J Eco 2(3):32–37

    Google Scholar 

  • Miyashita S, Fujiwara S, Tsuzuki M, Kaise T (2011) Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 75:522–530

    Article  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    Article  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28(2):299–311

    Article  Google Scholar 

  • Nagvenkar GS, Ramaiah N (2010) Arsenite tolerance and biotransformation potential in estuarine bacteria. Ecotoxicology 19(4):604–613

    Article  Google Scholar 

  • Nigam S, Gopal K, Vankar PS (2013) Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata. Environ Sci Pollut Res 20:4000–4008

    Article  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  Google Scholar 

  • Prasad BB, Banerjee S, Lakshami D (2006) An AlgaSORB column for the quantitative sorption of arsenic(III) from water samples. Water Qual Res J Can 4:190–197

    Google Scholar 

  • Prasad KS, Ramanathan AL, PaulJaishree SV, Prasad R (2013) Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34(19):2701–2708

    Article  Google Scholar 

  • Roy D, Gaur P, Verma N, Pathireddy M, Singh KP (2013) Bioremediation of Arsenic (III) from Water Using Baker Yeast Sacchromyces cerevisiae. Int J Environ Bioremed Biodegrad 1(1):14–19

    Google Scholar 

  • Sele V, Sloth JJ, Lundebye AK, Larsen EH, Berntssen MHG, Amlund H (2012) Arsenolipids in marine oils and fats: A review of occurrence, chemistry and future research needs. Food Chem 133(3):618–630

    Article  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenos-cyphus ericae. Plant Physiol 124:1327–1334

    Article  Google Scholar 

  • Singh S, Shrivastava A, Barla A, Bose S (2015) Isolation of arsenic-resistant bacteria from Bengal delta sediments and their efficacy in arsenic removal from soil in Association with Pteris vittata. Geomicrobiol J 32(8):712–723

    Article  Google Scholar 

  • Smith RL, Ceazan ML, Brooks MH (1994) Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl Environ Microbiol 60(6):1949–1955

    Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. PNAS 107(49):21187–21192

    Article  Google Scholar 

  • Srivastava S, Shrivastava M, Suprasanna P, D’Souza SF (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941

    Article  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D'Souza SF (2016) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Botany 60(12):3419–3431

    Article  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresour Technol 99(14):6017–6027

    Article  Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127(3):434–442

    Article  Google Scholar 

  • Tangahu BV, Siti Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Article  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    Article  Google Scholar 

  • Valls M, Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338

    Article  Google Scholar 

  • Van Halem D, Heijman SG, Johnston R, Huq IM, Ghosh SK, Verberk JQ, Amy GL, van Dijk JC (2010) Subsurface iron and arsenic removal: low-cost technology for community-based water supply in Bangladesh. Water Sci Technol 62(11):2702–2709

    Article  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111(5):1065–1074

    Article  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–670

    Article  Google Scholar 

  • Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76(9):1258–1264

    Article  Google Scholar 

  • Ye WL, Khan MA, McGrath SP, Zhao FJ (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159(12):3739–3743

    Article  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shukla, A., Srivastava, S. (2017). Emerging Aspects of Bioremediation of Arsenic. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics