Skip to main content

Green Analytical Techniques: Novel and Aboriginal Perspectives on Sustainable Development

  • Chapter
  • First Online:

Abstract

Green analytical techniques refer to approaches that decrease or completely remove preservatives, reagents, solvents, and other substances that are dangerous to man and the environment or and that also have the capacity to enhance speed and produce energy-efficient chemical analyses without affecting the quality and the required level of performance of products. This chapter discusses basic principles of green environmental techniques which aim at reducing the impact of chemical activities on man and the environment. These basic principles include energy and water usage reduction, reagent and solvent usage reduction, minimal production of gaseous, liquid and solid, substances during analytical processes, instantaneous analysis for prevention of pollution and intrinsically safer chemistry for prevention of accidents, synthesis of less harmful chemicals, atom economy, prevention, catalysis, design of benign chemicals, use of solvents and auxiliaries that are safer, designing processes that are energy efficient, usage of renewable resources, derivative reduction, and planning for degradation. Emphasis on green separation techniques, green spectrophotometric techniques, basics of green analytical techniques, the problems associated with the formulation of ideologies of green analytical chemistry to existing analytical laboratories, as well as the evaluation of the impact on man and the environment have also been discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam F, Abert-Vian M, Peltier G et al (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465. doi:10.1016/j.biortech.2012.02.096

    Article  Google Scholar 

  • Anastas PT (1999) Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 29:167–175. doi:10.1016/j.trac.2012.03.013

    Article  Google Scholar 

  • Anastas PT, Lankey RL (2000) Life cycle assessment and green chemistry: The yin and yang of industrial ecology. Green Chem 2:289–295

    Article  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Armenta S, Garrigues S, De La Guardia M (2008) Green analytical chemistry. Trends Anal Chem 27:497–511

    Article  Google Scholar 

  • Beach ES, Cui Z, Anastas PT (2009) Green chemistry: a design framework for sustainability. Ener Environ Sci 2:1038–1049

    Article  Google Scholar 

  • Bendicho C, De La Calle I, Pena F et al (2012) Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. Trends Anal Chem 31:50–60

    Article  Google Scholar 

  • Berthod A, Cara-Broch S (2004) Uses of ionic liquids in analytical chemistry. Ann Marie Curie Fell Assoc 3:1–6. doi:10.1021/ac070742b

    Google Scholar 

  • Casadio F, Leona M, Lombardi JR et al (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43:782–791. doi:10.1021/ar100019q

    Article  Google Scholar 

  • Chemat S, Tomao V, Chemat F (2012) Limonene as green solvent for extraction of natural products. In: Mohammad A, Dr I (eds) Green solvents I: properties and applications in chemistry. Springer Science+Business Media, Dordrecht, pp 175–186

    Chapter  Google Scholar 

  • de Melo MMR, Silvestre AJD, Silva CM (2014) Supercritical fluid extraction of vegetable matrices: applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 92:115–176. doi:10.1016/j.supflu.2014.04.007

    Article  Google Scholar 

  • Flieger J, Grushka EB, Czajkowska-Żelazko A (2014) Ionic Liquids as solvents in separation processes. Austin J Anal Pharm Chem 1(2):1009

    Google Scholar 

  • Francisco M, Van Den Bruinhorst A, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chemie Int Ed 52:3074–3085. doi:10.1002/anie.201207548

    Article  Google Scholar 

  • Gałuszka A, Migaszewski ZM, Konieczka P et al (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Anal Chem 37:61–72. doi:10.1016/j.trac.2012.03.013

    Article  Google Scholar 

  • Golonka K (1996) Strategies for treatment of smelter gases containing sulphur dioxide a techno-economic study. Ph.D. Thesis, Monash University

    Google Scholar 

  • Gonzalez MA, Smith RL (2003) A methodology to evaluate process sustainability. Environ Prog 22:269–276

    Article  Google Scholar 

  • Hafizan C, Noor ZZ, Abba AH et al (2016) An alternative aggregation method for a life cycle impact assessment using an analytical hierarchy process. J Cleaner Prod 112:3244–3255

    Article  Google Scholar 

  • He Y, Tang L, Wu X et al (2007) Spectroscopy: the best way toward green analytical chemistry. Appl Spectr Rev 42:119–138

    Article  Google Scholar 

  • Herrero M, Cifuentes A, Ibaez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae - a review. Food Chem 98:136–148. doi:10.1016/j.foodchem.2005.05.058

    Article  Google Scholar 

  • Ho TD, Zhang C, Hantao LW et al (2014) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285. doi:10.1021/ac4035554

    Article  Google Scholar 

  • Huddleston JG, Willauer HD, Swatloski RP et al (1998) Room temperature ionic liquids as novel media for “clean ” liquid – liquid extraction. Chem Commun 1998:1765–1766. doi:10.1039/A803999B

    Article  Google Scholar 

  • International Standard Organisation (ISO) (2006a) Environmental management—life cycle assessment: principles and framework. ISO14040. ISO, Geneva

    Google Scholar 

  • International Standard Organisation (ISO) (2006b) Environmental management—life cycle assessment: requirements and guidelines. ISO14044. ISO, Geneva

    Google Scholar 

  • International Reference Life Cycle Data System (ILCD) (2010) General guide for life cycle assessment—detailed guidance. JRC European Commission, Institute for Environment and Sustainability, Italy

    Google Scholar 

  • Jiménez-González C, Curzons AD, Constable DJ et al (2004) Expanding GSK’s solvent selection guide—application of life cycle assessment to enhance solvent selections. Clean Techn Environ Policy 7:42–50

    Article  Google Scholar 

  • Kayan B, Akay S, Yang Y (2016) Green chromatographic separation of coumarin and vanillins using subcritical water as the mobile phase. J Chromatogr Sci 54(7):1187–1192. doi:10.1093/chromsci/bmw049

    Article  Google Scholar 

  • Li J, Han H, Wang Q et al (2011) Polymeric ionic liquid-coated capillary for capillary electrophoresis. J Sep Sci 34:1555–1560. doi:10.1002/jssc.201100128

    Article  Google Scholar 

  • Licence P, Ke J, Sokolova M et al (2003) Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plant. Green Chem 5:99–104

    Article  Google Scholar 

  • Mulvihill MJ, Beach ES, Zimmerman JB et al (2011) Green chemistry and green engineering: a framework for sustainable technology development. Ann Review Environ Res 36:271–293

    Article  Google Scholar 

  • Nordon A, Mcgill CA, Littlejohn D (2001) Process NMR spectrometry. Analyst 126:260–272

    Article  Google Scholar 

  • Ohio Environmental Protection Agency (2010) Fact sheet for National Pollutant Discharge Elimination System, NPDES Permit No. OHG870001, General permit for discharges from pesticide applications, Ohio 43216-1049

    Google Scholar 

  • Ramos L, Ramos J, Brinkman UT (2005) Miniaturization in sample treatment for environmental analysis. Anal Bioanal Chem 381:119–140

    Article  Google Scholar 

  • Shabkhiz MA, Eikani MH, Bashiri SZ et al (2016) Superheated water extraction of glycyrrhizic acid from licorice root. Food Chem 210:396–401. doi:10.1016/j.foodchem.2016.05.006

    Article  Google Scholar 

  • Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283

    Article  Google Scholar 

  • Smith RM (2006) Superheated water: the ultimate green solvent for separation science. Anal Bioanal Chem 385:419–421. doi:10.1007/s00216-006-0437-y

    Article  Google Scholar 

  • Stark A, Ott D, Kralisch D et al (2010) Ionic liquids and green chemistry: a lab experiment. J Chem Educ 87:196–201

    Article  Google Scholar 

  • Sugiyama K, Saito M, Hondo T et al (1985) New double-stage separation analysis method: directly coupled laboratory-scale supercritical fluid extraction—supercritical fluid chromatography, monitored with a multiwavelength ultraviolet detector. J Chromatogr A 332:107–116. doi:10.1016/S0021-9673(01)83289-1

    Article  Google Scholar 

  • Tobiszewski M (2016) Metrics for green analytical chemistry. Anal Method 8:2993–2999. doi:10.1039/C6AY00478D

    Article  Google Scholar 

  • Tobiszewski M, Mechlińska A, Zygmunt B et al (2009) Green analytical chemistry in sample preparation for determination of trace organic pollutants. Trends Anal Chem 28:943–951

    Article  Google Scholar 

  • Tobiszewski M, Mechlinska A, Namiesnik J (2010) Green analytical chemistry-theory and practice. Chem Soc Rev 39:2869–2878

    Article  Google Scholar 

  • Turner C (2013) Sustainable analytical chemistry-more than just being green. Pur Appl Chem 85(12):2217–2229

    Article  Google Scholar 

  • United Nations Environment Programme (UNEP) (1996) Life cycle assessment: What it is and how to do it. UNEP, Paris

    Google Scholar 

  • Van der Vorst G, Van Langenhove H, De Paep F et al (2009) Exergetic life cycle analysis for the selection of chromatographic separation processes in the pharmaceutical industry: preparative HPLC versus preparative SFC. Green Chem 11:1007–1012. doi:10.1039/B901151J

    Article  Google Scholar 

  • Wardencki W, Curylo J, Namieoenik J (2005) Green chemistry—current and future issues. Pol J Environ Stud 14(4):389–395

    Google Scholar 

  • Yan P, Zhou M, Sebastian D et al (2001) Integrating Eco-Compass concept into integrated product and process development. Int J Envir Consc Design Manuf 10(3):2001–2002

    Google Scholar 

  • Yanes EG, Gratz SR, Stalcup AM (2000) Tetraethylammonium tetrafluoroborate: a novel electrolyte with a unique role in the capillary electrophoretic separation of polyphenols found in grape seed extracts. Analyst 125:1919–1923. doi:10.1039/b004530f

    Article  Google Scholar 

  • Yang Y, Strickland Z, Kapalavavi B et al (2011) Industrial application of green chromatography—I. Separation and analysis of niacinamide in skincare creams using pure water as the mobile phase. Talanta 84:169–174. doi:10.1016/j.talanta.2010.12.044

    Google Scholar 

  • Yang Y, Kapalavavi B, Gujjar L et al (2012) Industrial application of green chromatography–II. Separation and analysis of preservatives in skincare products using subcritical water chromatography. Int J Cosmet Sci 34:466–476

    Article  Google Scholar 

  • Zlotorzynski A (1995) The application of microwave radiation to analytical and environmental chemistry. Crit Rev Anal Chem 25:43–76

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank University of South Africa (UNISA) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus A. M. Msagati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wanda, E.M.M. et al. (2017). Green Analytical Techniques: Novel and Aboriginal Perspectives on Sustainable Development. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics