Skip to main content

Detection of Phytoplasmas Associated to Grapevine Yellows Diseases in Research and Diagnostics

  • Chapter
  • First Online:
Grapevine Yellows Diseases and Their Phytoplasma Agents

Part of the book series: SpringerBriefs in Agriculture ((BRIEFSAGRO))

  • 461 Accesses

Abstract

Research into grapevine yellows diseases and their control relies on detection and identification of the phytoplasmas associated with them. Detection methods for phytoplasmas can be divided into four main categories: biological tests, microscopy techniques, and immunological and molecular approaches. The suitability of each of these methods for different studies is discussed in this chapter, along with their advantages and disadvantages. Among these methods, PCR-based assays in particular are routinely used in diagnostic laboratories because of their high sensitivity and potential to be automated for high-throughput testing. Recently, isothermal amplification methods have been developed for rapid on-site phytoplasma diagnostics, such as loop-mediated isothermal amplification assays. The development of any diagnostic assay requires thorough validation to ensure its sensitivity, specificity, repeatability, and reproducibility and that the assay is fit for purpose. In addition, for validated detection, measures to reduce the uncertainty of tests that are carried out need to be implemented through the whole diagnostic process, which must therefore also be robust.

The original version of this chapter was revised. Nataša Mehle’s affiliation was corrected. An erratum to this book can be found at DOI 10.1007/978-3-319-50648-7_5

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-50648-7_5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Afonina I, Zivartis M, Lukhtanov E et al (1997) Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res 25:2657–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aldaghi M, Massart S, Steyer S et al (2007) Study on diverse grafting techniques for their capability in rapid and efficient transmission of apple proliferation disease to different host plants. Bull Insectol 60:381–382

    Google Scholar 

  • Angelini E, Clair D, Borgo M et al (2001) “Flavescence dorée” in France and Italy – Occurrence of closely related phytoplasma isolates and their near relationships to Palatine grapevine yellows and an alder yellows phytoplasma. Vitis 40:79–86

    CAS  Google Scholar 

  • Angelini E, Negrisolo E, Clair D et al (2003) Phylogenetic relationships among “flavescence dorée” strains and related phytoplasmas determined by heteroduplex mobility assay and sequence of ribosomal and nonribosomal DNA. Plant Pathol 52:663–672

    Article  CAS  Google Scholar 

  • Angelini E, Bianchi GL, Filippin L et al (2007) A new TaqMan method for identification of phytoplasma associated with grapevine yellows by real-time PCR assay. J Microbiol Methods 68:613–622

    Article  CAS  PubMed  Google Scholar 

  • Arnaud G, Malembic-Maher S, Salar P et al (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Appl Environ Microbiol 73:4001–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryan A, Brader G, Mörter J et al (2014) An abundant ‘Candidatus Phytoplasma solani’ tuf b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus. Eur J Plant Pathol 140:213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryan A, Musetti R, Riedle-Bauer M, Brader G (2016) Phytoplasma transmission by heterologous grafting influences viability of the scion and results in early symptom development in periwinkle rootstock. J Phytopathol 164:631–640

    Article  CAS  Google Scholar 

  • Bekele B, Hodgetts J, Tomlinson J et al (2011) Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathol 60(2):345–355

    Article  CAS  Google Scholar 

  • Bertaccini A (2007) Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci 12:673–689

    Article  CAS  PubMed  Google Scholar 

  • Bertaccini A (2014) Phytoplasmas and phytoplasma disease management: how to reduce their economic impact. Food and Agriculture COST Action FA0807, Integrated management of phytoplasma epidemics in different crop systems. IPWG – International Phytoplasmologist Working Group, Bologna 288 pp

    Google Scholar 

  • Bertaccini A, Duduk B (2009) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48:355–378

    CAS  Google Scholar 

  • Bertaccini A, Davis RE, Lee I-M (1992) In vitro micropropagation for maintenance of mycoplasmalike organisms in infected plant tissues. HortSci 27(9):1041–1043

    Google Scholar 

  • Bertaccini A, Arzone A, Alma A et al (1993) Detection of mycoplasmalike organisms in Scaphoideus titanus Ball reared on “flavescence dorée2” infected grapevine by dot hybridizations using DNA probes. Phytopathol Mediterr 32:20–24

    CAS  Google Scholar 

  • Bertaccini A, Paltrinieri S, Martini M et al (2013) Micropropagation and maintenance of phytoplasmas in tissue culture. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 33–40

    Chapter  Google Scholar 

  • Bianco PA, Casati P, Marziliano N (2004) Detection of phytoplasmas associated with grapevine “flavescence dorée” disease using real-time PCR. J Plant Pathol 86:257–261

    CAS  Google Scholar 

  • Bosco D, Tedeschi R (2013) Insect vector transmission assays. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 73–85

    Chapter  Google Scholar 

  • Boudon-Padieu E, Larrue J, Caudwell A (1989) ELISA and dot-blot detection of flavescence dorée-MLO in individual leafhopper vectors during latency and inoculative state. Curr Microbiol 19(6):357–364

    Article  Google Scholar 

  • Boudon-Padieu E, Béjat A, Clair D et al (2003) Grapevine yellows: comparison of different procedures for DNA extraction and amplification for routine diagnosis of phytoplasmas in grapevine. Vitis 42:141–149

    CAS  Google Scholar 

  • Brader G, Aryan A, Wischnitzki E, Riedle-Bauer M (2016) Strain dependent symptoms and expression of “stolbur” phytoplasma genes in the experimental host Catharanthus roseus. Mitt Klosterneuburg 66:74–92

    Google Scholar 

  • Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Bulgari D, Casati P, Faoro F (2011) Fluorescence in situ hybridization for phytoplasma and endophytic bacteria localization in plant tissues. J Microbiol Methods 87(2):220–223

    Article  CAS  PubMed  Google Scholar 

  • Buxa SV, Pagllari L, Musetti R (2016) Epifluorescence microscopy imaging of phytoplasmas in embedded leaf tissues using DAPI and SYTO13 fluorochromes. Microscopie 13:49–56

    Google Scholar 

  • Carraro L, Osler R, Refatti E, Poggi Pollini C (1988) Transmission of the possible agent of apple proliferation to Vinca rosea by dodder. Riv Patol Veg 26:43–52

    Google Scholar 

  • Castro S, Romero J (2002) The association of clover proliferation phytoplasma with “stolbur” disease of pepper in Spain. J Phytopathol 150:25–29

    Article  CAS  Google Scholar 

  • Castro S, Romero J (2004) First detection of a phytoplasma infecting faba bean (Vicia faba L.) in Spain. Span J Agric Res 2:253–256

    Article  Google Scholar 

  • Caudwell A, Kuszala C, Fleury A (1988) Antigen preparation from plant tissues of pathogenic mycoplasms (MLO) causing “flavescence dorée” disease. J Phytopathol 123:124–132

    Article  Google Scholar 

  • Chen KH, Guo JR, Wu XY et al (1993) Comparison of monoclonal antibodies, DNA probes, and PCR for detection of the grapevine yellows disease agent. Mol Plant Pathol 83(9):915–922

    CAS  Google Scholar 

  • Choi YH, Tapias EC, Kim HK et al (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant-Microbe Interact 17:1175–1184. doi:10.1094/MPMI.2004.17.11.1175

    Article  CAS  PubMed  Google Scholar 

  • Chuche J, Thiery D (2014) Biology and ecology of the “flavescence dorée” vector Scaphoideus titanus: a review. Agron Sustain Dev 34:381–403

    Article  Google Scholar 

  • Cimerman A, Pacifico D, Salar P et al (2009) Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the stolbur phytoplasma. Appl Environ Microbiol 75:2951–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clair D, Larrue J, Aubert G et al (2003) A multiplex nested-PCR assay for sensitive and simultaneous detection and direct identification of phytoplasmas in the elm yellows group and “stolbur” group and its use in survey of grapevine yellows in France. Vitis 42(3):151–157

    Google Scholar 

  • Constable FE, Gibb KS, Symons RH (2003) The seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathol 52:267–276

    Article  Google Scholar 

  • Contaldo N, Paltrinieri S, Makarova O et al (2015) Q-bank Phytoplasma: a DNA bar-coding tool for phytoplasma identification. Chapter 10. In: Lacomme C (ed) Plant pathology, techniques and protocols, methods in molecular biology, vol 1302. Springer, New York, pp 123–135

    Google Scholar 

  • Contaldo N, Satta E, Zambon Y et al (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. J Microbiol Methods 127:105–110

    Article  CAS  PubMed  Google Scholar 

  • Cousin MT, Sharma AK, Misra S (1986) Correlation between light and electron microscopic observations and identification of mycoplasmalike organisms using consecutive 350 nm thick sections. J Phytopathol 115:368–374

    Article  Google Scholar 

  • Daire X, Boudon-Padieu E, Berville A et al (1992) Cloned DNA probes for detection of grapevine “flavescence dorée” mycoplasma-like organism (MLO). Ann Appl Biol 121:95–103

    Article  Google Scholar 

  • Daire X, Clair D, Reinert W, Boudon-Padieu E (1997) Detection and differentiation of grapevine yellows phytoplasmas belonging to the elm yellows group and to the “stolbur” subgroup by PCR amplification of non-ribosomal DNA. Eur J Plant Pathol 103:507–514

    Article  CAS  Google Scholar 

  • Davis RE, Dally EL, Bertaccini A et al (1993) Restriction fragment length polymorphism analyses and dot hybridisations distinguish mycoplasmalike organisms associated with “flavescence dorée” and southern European grapevine yellows disease in Italy. Phytopathology 83:772–776

    Article  CAS  Google Scholar 

  • Deeley J, Stevens WA, Fox RTV (1979) Use of Dienes’ stain to detect plant diseases induced by mycoplasmalike organisms. Phytopathology 69:1169–1171

    Article  Google Scholar 

  • Del Serrone P, Barba M (1996) Importance of the vegetative stage for phytoplasma detection in yellows-diseased grapevines. Vitis 35(2):101–102

    Google Scholar 

  • Devonshire BJ (2013) Visualization of phytoplasmas using electron microscopy. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 123–138

    Chapter  Google Scholar 

  • Dickinson M (2015) Loop-mediated isothermal amplification (LAMP) for detection of phytoplasmas in the field. In: Lacomme C (ed) Plant pathology, vol 1302. Springer, New York, pp 99–111

    Chapter  Google Scholar 

  • Dickinson M, Hodgetts J (2013) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York421 pp

    Google Scholar 

  • Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma or PLT grouplike microrganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or pawlonia witches’ broom. Ann Phytopathol Soc Jpn 33:259–266

    Article  Google Scholar 

  • Duduk B, Paltrinieri S, Lee I-M, Bertaccini A (2013) Nested PCR and RFLP analysis based on the 16S rRNA gene. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 159–172

    Chapter  Google Scholar 

  • Dumonceaux TJ, Green M, Hammond C et al (2014) Molecular diagnostic tools for detection and differentiation of phytoplasmas based on chaperonin-60 reveal differences in host plant infection patterns. PLoS ONE 9(12):e116039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • EPPO (2014) PM 7/98 (2): specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity. EPPO Bull 44:117–147

    Article  Google Scholar 

  • EPPO (2016) PM 7/79 (2): grapevine “flavescence dorée” phytoplasma. EPPO Bull 46:78–93

    Article  Google Scholar 

  • Eriksson S, Kim SK, Kubista M, Nordén B (1993) Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change. Biochemistry 32(12):2987–2998

    Article  CAS  PubMed  Google Scholar 

  • Fialová R, Válová P, Balakishiyeva G et al (2009) Genetic variability of “stolbur” phytoplasma in annual crop and wild plant species in south Moravia. J Plant Pathol 91(2):411–416

    Google Scholar 

  • Firrao G, Moretti M, Ruiz Rosquete M et al (2005) Nanobiotransducer for detecting “flavescence dorée” phytoplasma. J Plant Pathol 87:101–107

    CAS  Google Scholar 

  • Firrao G, Garcia-Chapa M, MarzachÌ C (2007) Phytoplasmas: genetics, diagnosis and relationships with the plant and insect hosts. Front Biosci 12:1353–1375

    Article  CAS  PubMed  Google Scholar 

  • Fos A, Danet JL, Zreik L et al (1992) Use of a monoclonal antibody to detect the “stolbur” mycoplasmalike organism in plants and insects and to identify a vector in France. Plant Dis 76:1092–1096

    Article  CAS  Google Scholar 

  • Frosini A, Casati P, Bianco PA et al (2002) Ligase detection reaction and universal array as a tool to detect grapevine infecting phytoplasmas. Minerva Biotechnol 14:265–267

    Google Scholar 

  • Gaffuri F, Sacchi S, Cavagna B (2011) First detection of the mosaic leafhopper, Orientus ishidae, in northern Italian vineyards infected by the “flavescence dorée” phytoplasma. New Dis Rep 24:22

    Article  Google Scholar 

  • Galetto L, Marzachì C (2010) Real-time PCR diagnosis and quantification of phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford, pp 1–18

    Google Scholar 

  • Galetto L, Bosco D, Marzachì C (2005) Universal and group specific real-time PCR diagnosis of “flavescence doreé” (16Sr-V), “bois noir” (16Sr-XII) and apple proliferation (16Sr-X) phytoplasmas from field-collected plant hosts and insect vectors. Ann Appl Biol 147:191–201

    Article  CAS  Google Scholar 

  • Gentili A, Ferretti L, Vizzaccaro L, et al (2016) Detection of “bois noir” phytoplasma by a quick-to-use isothermal amplification assay: preliminary results Mitteilungen Klosterneuburg, proceedings of the 4th European Bois Noir Workshop – Klosterneuburg, Austria March 9–11, 66:70–73

    Google Scholar 

  • Gibb KS, Constable FE, Moran JR, Padovan AC (1999) Phytoplasmas in Australian grapevines – detection, differentiation and associated diseases. Vitis 38:107–114

    Google Scholar 

  • Green MJ, Thompson DA, MacKenzie DJ (1999) Easy and efficient DNA extraction from woody plants for the detection of phytoplasmas by polymerase chain reaction. Plant Dis 83:482–485

    Article  CAS  Google Scholar 

  • Hiruki C, da Rocha A (1986) Histochemical diagnosis of mycoplasma infections in Catharanthus roseus by means of a fluorescent DNA-binding agent, 4,6-diamidino-2- phenylindole-2HCl (DAPI). Can J Plant Pathol 8(2):185–188

    Article  CAS  Google Scholar 

  • Hodgetts J, Dickinson M (2010) Phytoplasma phylogeny and detection based on genes other than 16S rRNA. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CABI, Cambridge, UK, pp 93–113

    Google Scholar 

  • Hodgetts J, Ball T, Boonham N et al (2007) Use of terminal restriction fragment length polymorphism (T-RFLP) for identification of phytoplasmas in plants. Plant Pathol 56:357–365

    Article  CAS  Google Scholar 

  • Hodgetts J, Boonham N, Mumford R, Dickinson M (2009) Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group-specific detection of phytoplasmas. Appl Environ Microbiol 75:2945–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgetts J, Tomlinson J, Boonham N et al (2011) Development of rapid in-field loop-mediated isothermal amplification (LAMP) assays for phytoplasmas. Bull Insectol 64:41–42

    Google Scholar 

  • Hodgetts J, Crossley D, Dickinson M (2013) Techniques for the maintenance and propagation of phytoplasmas in glasshouse collections of Catharanthus roseus. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 15–32

    Chapter  Google Scholar 

  • Hogenhout SA, Šeruga MM (2010) Phytoplasma genomics, from sequencing to comparative and functional genomics – what have we learnt? In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford, pp 19–36

    Google Scholar 

  • Hren M, Boben J, Rotter A et al (2007) Real-time PCR detection systems for “flavescence dorée” and “bois noir” phytoplasma in grapevine: a comparison with the conventional PCR detection system and their application in diagnostics. Plant Pathol 56:785–796

    Article  CAS  Google Scholar 

  • Hren M, Nikolić P, Rotter A et al (2009) “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10:460. doi:10.1186/1471-2164-10-460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishiie T, Doi Y, Yora K, Asuyama H (1967) Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Ann Phytopathol Soc Jpn 33:267–275

    Google Scholar 

  • Jarausch W, Peccerella T, Schwind N et al (2004) Establishment of a quantitative real-time PCR assay for the quantification of apple proliferation phytoplasmas in plants and insects. Acta Hortic 657:415–420

    Article  CAS  Google Scholar 

  • Kamińska M, Korbin M (1999) Graft and dodder transmission of phytoplasma affecting lily to experimental hosts. Acta Physiol Plant 21:21–26

    Article  Google Scholar 

  • Kamińska M, Dziekanowska D, Rudzińska-Langwald A (2001) Detection of phytoplasma infection in rose, with degeneration symptoms. J Phytopathol 149:3–10

    Article  Google Scholar 

  • Kogovšek P, Hodgetts J, Hall J et al (2015) LAMP assay and rapid sample preparation method for on-site detection of “flavescence dorée” phytoplasma in grapevine. Plant Pathol 64(2):286–296

    Article  PubMed  CAS  Google Scholar 

  • Kogovšek P, Mehle N, Pugelj A et al (2016) Rapid loop-mediated isothermal amplification assays for grapevine yellows phytoplasmas on crude leaf-vein homogenate has the same performance as qPCR. Eur J Plant Pathol:1–10. doi:10.1007/s10658-016-1070-z

  • Kube M, Mitrovic J, Duduk B et al (2012) Current view on phytoplasma genomes and encoded metabolism. Sci World J 2012:85942

    Article  CAS  Google Scholar 

  • Lebsky V, Poghosyan A (2014) Scanning electron microscopy detection of phytoplasmas and other phloem limiting pathogens associated with emerging diseases of plants. In: Mendez-Vilas A (ed) Microscopy: advances in scientific research and education. Formatex Research Center, Barcelona, pp 78–83

    Google Scholar 

  • Lee I-M, Gundersen DE, Hammond RW, Davis RE (1994) Use of mycoplasma like organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 84:559–566

    Article  CAS  Google Scholar 

  • Lee I-M, Bertaccini A, Vibio M, Gundersen D (1995) Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology 85(6):728–735

    Article  CAS  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    Article  CAS  Google Scholar 

  • Lee I-M, Martini M, Marcone C, Zhu SF (2004) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54:337–347

    Article  CAS  PubMed  Google Scholar 

  • Lherminier J, Bonfiglioli RG, Daire X et al (1999) Oligodeoxynucleotides as probes for in situ hybridization with transmission electron microscopy to specifically localize phytoplasma in plant cells. Mol Cell Probes 93:41–47

    Article  Google Scholar 

  • Lherminier J, Terwisscha van Scheltinga T, Boudon-Padieu E, Caudwell A (1989) Rapid immunofluorescent detection of the grapevine “flavescence dorée” mycoplasmalike organism in the salivary glands of the leafhopper Euscelidius variegates Kbm. J Phytopathol 125:353–360

    Google Scholar 

  • Lherminier J, Prensier G, Boudon-Padieu E, Caudwell A (1990) Immunolabeling of grapevine “flavescence dorée” MLO in salivary glands of Euscelidius variegatus: a light and electron microscopy study. J Histochem Cytochem 38(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Maixner M (1994) Transmission of German grapevine yellows (“Vergilbungskrankheit”) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis 33:103–104

    Google Scholar 

  • Maixner M (2011) Recent advances in “bois noir” research. Petria 21:17–32

    Google Scholar 

  • Maixner M, Ahrens U, Seemüller E (1995) Detection of the German grapevine yellows (“Vergilbungskrankheit”) MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. Eur J Plant Pathol 101:241–250

    Article  CAS  Google Scholar 

  • Makarova O, Contaldo N, Paltrinieri S et al (2013) DNA Bar-coding for phytoplasma identification. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 301–318

    Chapter  Google Scholar 

  • Malembic-Maher S, Salar P, Filippin L et al (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. Int J Syst Evol Microbiol 61:2129–2134

    Article  PubMed  Google Scholar 

  • Marcone C, Ragozzino A, Seemüller E (1997) Dodder transmission of alder yellows phytoplasma to the experimental host Catharanthus roseus (periwinkle). Eur J For Pathol 27:347–350

    Article  Google Scholar 

  • Marcone C, Hergenhahn F, Ragozzino A, Seemüller E (1999) Dodder transmission of pear decline, European stone fruit yellows, rubus stunt, Picris echioides yellows and cotton phyllody phytoplasmas to periwinkle. J Phytopathol 147:187–192

    Article  CAS  Google Scholar 

  • Margaria P, Rosa C, Marzachì C et al (2007) Detection of “flavescence dorée” phytoplasma in grapevine by reverse-transcription PCR. Plant Dis 91(11):1496–1501

    Article  CAS  Google Scholar 

  • Margaria P, Turina M, Palmano S (2009) Detection of “flavescence dorée” and “bois noir” phytoplasmas, Grapevine leafroll associated virus-1 and -3 and Grapevine virus A from the same crude extract by reverse transcription-real time Taqman assays. Plant Pathol 58:838–845

    Article  Google Scholar 

  • Martini M, Murari E, Mori N, Bertaccini A (1999) Identification and epidemic distribution of two “flavescence dorée”-related phytoplasmas in Veneto (Italy). Plant Dis 83:925–930

    Article  CAS  Google Scholar 

  • Martini M, Lee I-M, Bottner KD et al (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 57(9):2037–2051

    Article  CAS  PubMed  Google Scholar 

  • Marzachì C, Veratti F, Bosco D (1998) Direct PCR detection of phytoplasmas in experimentally infected insects. Ann Appl Biol 133:45–54

    Article  Google Scholar 

  • Mehle N, Seljak G, Rupar M et al (2010) The first detection of a phytoplasma from the 16SrV (elm yellows) group in the mosaic leafhopper Orientus ishidae. New Dis Rep 22:11

    Article  Google Scholar 

  • Mehle N, Ravnikar M, Seljak G et al (2011) The most widespread phytoplasmas, vectors and measures for disease control in Slovenia. Phytopathol Mol 1:65–76

    Google Scholar 

  • Mehle N, Nikolić P, Rupar M et al (2013) Automated DNA extraction for large numbers of plant samples. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New york, pp 139–145

    Chapter  Google Scholar 

  • Mehle N, Dreo T, Jeffries C, Ravnikar M (2014a) Descriptive assessment of uncertainties of qualitative real-time PCR for detection of plant pathogens and quality performance monitoring. EPPO Bull 44(3):502–509

    Article  Google Scholar 

  • Mehle N, Dreo T, Ravnikar M (2014b) Quantitative analysis of “flavescence doreé” phytoplasma with droplet digital PCR. Phytopath Moll 4(1):9–15

    Article  Google Scholar 

  • Meignoz R, Boudon-Padieu E, Larrue J, Caudwell A (1992) Grapevine “flavescence dorée”. Presence of MLO and associated cytopathological effects in grapevines. J Phytopathol 134:1–9

    Article  Google Scholar 

  • Mori N, Bressan A, Martini M et al (2002) Experimental transmission by Scaphoideus titanus ball of two “flavescence dorée”-type phytoplasmas. Vitis 41:99–102

    Google Scholar 

  • Murolo S, Marcone C, Prota V et al (2010) Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. J Appl Microbiol 109(6):2049–2059

    Article  CAS  PubMed  Google Scholar 

  • Musetti R, Favali MA (2004) Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. In: Current issues on multidisciplinary microscopy research and education, pp 72–80

    Google Scholar 

  • Nicolaisen M, Bertaccini A (2007) An oligonucleotide microarray-based assay for identification of phytoplasma 16S ribosomal groups. Plant Pathol 56:332–336

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima K, Nishida H (2007) Phylogenetic relationships among mycoplasmas based on the whole genomic information. J Mol Evol 65(3):249–258

    Article  CAS  PubMed  Google Scholar 

  • Pacifico D, Alma A, Bagnoli B et al (2009) Characterization of “bois noir” isolates by restriction fragment length polymorphism of a stolbur-specific putative membrane protein gene. Phytopathology 99(6):711–715

    Article  CAS  PubMed  Google Scholar 

  • Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31(14):e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelletier C, Salar P, Gillet J et al (2009) Triplex real-time PCR assay for sensitive and simultaneous detection of grapevine phytoplasmas of the 16SrV and 16SrXII-A groups with an endogenous analytical control. Vitis 48(2):87–95

    CAS  Google Scholar 

  • Prezelj N, Nikolić P, Gruden K et al (2013) Spatiotemporal distribution of “flavescence dorée” phytoplasma in grapevine. Plant Pathol 62:760–766

    Google Scholar 

  • Přibylová J, Špak J (2013) Dodder transmission of phytoplasmas. In: Dickinson M, Hodgetts J (eds) Phytoplasma: Methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 41–46

    Chapter  Google Scholar 

  • Prince JP, Davis RE, Wolf TK et al (1993) Molecular detection of diverse mycoplasmalike organisms (MLOs) associated with grapevine yellows and their classification with aster yellows, X-disease, and elm yellows MLOs. Phytopathology 83:1130–1137

    Article  CAS  Google Scholar 

  • Riedle-Bauer M, Sára A, Regner F (2008) Transmission of a “stolbur” phytoplasma by the Agalliinae leafhopper Anaceratagallia ribauti (Hemiptera, Auchenorrhyncha, Cicadellidae). J Phytopathol 156:687–690

    Article  Google Scholar 

  • Saccardo F, Martini M, Palmano S et al (2012) Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology 158:2805–2814

    Article  CAS  PubMed  Google Scholar 

  • Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143:3381–3389

    Article  CAS  PubMed  Google Scholar 

  • Seddas A, Meignoz R, Daire X et al (1993) Purification of grapevine “flavescence dorée” MLO (mycoplasma-like organism) by immunoaffinity. Curr Microbiol 27:229–236

    Article  CAS  Google Scholar 

  • Seddas A, Meignoz R, Daire X, Boudon-Padieu E (1996) Generation and characterization of monoclonal antibodies to “flavescence dorée” phytoplasma: serological relationships and differences in electroblot immunoassay profiles of “flavescence dorée” and elm yellows phytoplasmas. Eur J Plant Pathol 102:757–764

    Article  Google Scholar 

  • Seemüller E (1976) Investigations to demonstrate mycoplasma-like organisms in diseased plants by fluorescence microscopy. Acta Hortic 67:109–111

    Article  Google Scholar 

  • Seemüller E, Marcone C, Lauer U et al (1998) Current status of molecular classification of the phytoplasmas. J Plant Pathol 80(1):3–26

    Google Scholar 

  • Šeruga Musić M, Krajačić M, Škorić D (2008) The use of SSCP analysis in the assessment of phytoplasma gene variability. J Microbiol Methods 73(1):69–72

    Article  PubMed  CAS  Google Scholar 

  • Sforza R, Bourgoin T, Wilson SW, Boudon-Padieu E (1999) Field observations, laboratory rearing and descriptions of immatures of the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). Eur J Entomol 96:409–418

    Google Scholar 

  • Škorić D, Sarić A, Vibio M et al (1998) Molecular identification and seasonal monitoring of phytoplasmas infecting Croatian grapevines. Vitis 37:171–175

    Google Scholar 

  • Tanne E, Orenstein S (1997) Identification and typing of grapevine phytoplasma amplified by graft transmission to periwinkle. Vitis 36:35–38

    CAS  Google Scholar 

  • Terlizzi F, Credi R (2007) Uneven distribution of “stolbur” phytoplasma in Italian grapevines as revealed by nested-PCR. Bull Insectol 60:365–366

    Google Scholar 

  • Tomlinson JA, Boonham N, Dickinson M (2010) Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol 59(3):465–471

    Article  CAS  Google Scholar 

  • Trivellone V, Pinzauti B, Bagnoli B (2005) Reptalus quinquecostatus (Dufour) (Auchenorrhyncha: Cixiidae) as a possible vector of “stolbur”-phytoplasma in a vineyard in Tuscany. Redia 88:103–108

    Google Scholar 

  • Trivellone V, Filippin L, Jermini M, Angelini E (2015) Molecular characterization of phytoplasma strains in leafhoppers inhabiting the vineyard agroecosystem in Southern Switzerland. Phytopath Moll 5(1 suppl):S45–S46

    Article  Google Scholar 

  • Wang K, Hiruki C (2005) Distinctions between phytoplasmas at the subgroup level detected by heteroduplex mobility assay. Plant Pathol 54:625–633

    Article  CAS  Google Scholar 

  • Waters H, Hunt P (1980) The in vivo three-dimensional form of a plant mycoplasma-like organism by the analysis of serial ultrathin sections. J Gen Microbiol 116:111–131

    Google Scholar 

  • Webb DR, Bonfiglioli RG, Carraro L et al (1999) Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89:894–901

    Article  CAS  PubMed  Google Scholar 

  • Weintraub P, Gross J (2013) Capturing insect vectors and phytoplasmas. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 61–72

    Chapter  Google Scholar 

  • Weintraub PG, Wilson MR (2010) Control of phytoplasma diseases and vectors. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford, pp 233–249

    Google Scholar 

  • Zhao Y, Wei W, Lee I-M et al (2013) The iPhyClassifier, an interactive online tool for phytoplasma classification and taxonomic assignment. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 329–338

    Chapter  Google Scholar 

Download references

Acknowledgement

While the grafting experiments were partially supported by the grant P 24201-B16 of the Austrian Science Fund (FWF), the transmission ones were financed by the Euphresco project GRAFDEPI2 and by the Ministry of Agriculture, Forestry and Food of the Republic of Slovenia. We thank Mag. Gabrijel Seljak for helping in collecting and identification of O. ishidae, and Tina Naglič, and Špela Alič for the excellent technical help.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Mehle, N., Ravnikar, M., Žnidarič, M.T., Aryan, A., Brader, G., Dermastia, M. (2017). Detection of Phytoplasmas Associated to Grapevine Yellows Diseases in Research and Diagnostics. In: Grapevine Yellows Diseases and Their Phytoplasma Agents. SpringerBriefs in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-50648-7_4

Download citation

Publish with us

Policies and ethics