Free Flow of Scientific Information Versus Intellectual Property Rights

  • Pali U. K. De SilvaEmail author
  • Candace K. Vance
Part of the Fascinating Life Sciences book series (FLS)


As science is considered a community endeavor, the benefits of sharing scientific knowledge are almost universally accepted. At the same time, the importance of transforming scientific discoveries into technologies benefiting the society at large has been similarly acknowledged. To promote and incentivize the latter, governments have adopted policies encouraging academic researchers to patent and license their discoveries. According to some, however, the privatization of academic research funded by public funding hinders the free flow of scientific knowledge , which is detrimental to the progress of science. This chapter reviews literature on the topic and discusses the complexity of these seemingly contradicting objectives—free flow of scientific information and commercialization of scientific discoveries—and covers recent developments regarding this vigorously debated topic, particularly in the fields of human genomics and other life sciences.


Bayh-Dole Act Intellectual property rights Technology transfer Publicly funded research Gene patents 


  1. Agrawal, A., & Henderson, R. (2002). Putting patents in context: Exploring knowledge transfer from MIT. Management Science, 48(1), 44–60.CrossRefGoogle Scholar
  2. Andrews, L. B. (2002). Genes and patent policy: Rethinking intellectual property rights. Nature Reviews Genetics, 3(10), 803–808.CrossRefPubMedGoogle Scholar
  3. Angell, M. (2005). The truth about the drug companies: How they deceive us and what to do about it. New York: Random House Trade Paperbacks.Google Scholar
  4. Azoulay, P., Ding, W., & Stuart, T. (2007). The determinants of faculty patenting behavior: Demographics or opportunities? Journal of Economic Behavior & Organization, 63(4), 599–623. doi: 10.1016/j.jebo.2006.05.015.CrossRefGoogle Scholar
  5. Bekelman, J. E., Li, Y., & Gross, C. P. (2003). Scope and impact of financial conflicts of interest in biomedical research—A systematic review. Jama-Journal of the American Medical Association, 289(4), 454–465. doi: 10.1001/jama.289.4.454.CrossRefGoogle Scholar
  6. Bentwich, M. (2010). Changing the rules of the game: Addressing the conflict between free access to scientific discovery and intellectual property rights. Nature Biotechnology, 28(2), 137–140. doi: 10.1038/nbt0210-137.CrossRefPubMedGoogle Scholar
  7. Berman, H. M., & Dreyfuss, R. C. (2005). Reflections on the science and law of structural biology, genomics, and drug development. UCLA Law Review, 53, 871.Google Scholar
  8. Biddle, J. B. (2012). Tragedy of the Anticommons? Intellectual property and the sharing of scientific information. Philosophy of Science, 79(5), 821–832.CrossRefGoogle Scholar
  9. Blumenthal, D., Campbell, E. G., Anderson, M. S., Causino, N., & Louis, K. S. (1997). Withholding research results in academic life science—Evidence from a national survey of faculty. Jama-Journal of the American Medical Association, 277(15), 1224–1228. doi: 10.1001/jama.277.15.1224.CrossRefGoogle Scholar
  10. Blumenthal, D., Causino, N., Campbell, E., & Louis, K. S. (1996). Relationships between academic institutions and industry in the life sciences—An industry survey. New England Journal of Medicine, 334(6), 368–374.CrossRefPubMedGoogle Scholar
  11. Breschi, S., Lissoni, F., & Montobbio, F. (2007). The scientific productivity of academic inventors: New evidence from Italian data. Economics of Innovation and New Technology, 16(2), 101–118.CrossRefGoogle Scholar
  12. Cai, M. (2004). Madey v. Duke University: Shattering the Myth of Universities’ Experimental Use Defense. Berkeley Tech. LJ, 19, 175.Google Scholar
  13. Calvert, J., & Joly, P.-B. (2011). How did the gene become a chemical compound? The ontology of the gene and the patenting of DNA. Social Science Information, 50(2), 157–177.CrossRefGoogle Scholar
  14. Campbell, E. G., Clarridge, B. R., Gokhale, M., Birenbaum, L., Hilgartner, S., Holtzman, N. A., et al. (2002). Data withholding in academic genetics: Evidence from a national survey. JAMA, 287(4), 473–480.CrossRefPubMedGoogle Scholar
  15. Campbell, E. G., Weissman, J. S., Causino, N., & Blumenthal, D. (2000). Data withholding in academic medicine: Characteristics of faculty denied access to research results and biomaterials. Research Policy, 29(2), 303–312. doi: 10.1016/S0048-7333(99)00068-2.CrossRefGoogle Scholar
  16. Campo-Engelstein, L., & Chan, T. (2015). How gene patents may inhibit scientific research. Bioéthique Online, 4(3).Google Scholar
  17. Carayol, N. (2007). Academic incentives, research organization and patenting at a large French University. Economics of Innovation and New Technology, 16(2), 119–138.CrossRefGoogle Scholar
  18. Caulfield, T., Harmon, S. H. E., & Joly, Y. (2012). Open science versus commercialization: A modern research conflict? Genome Medicine, 4. doi: 10.1186/gm316
  19. Chahine, K. G. (2010). Anchoring gene patent eligibility to its constitutional mooring. Nature Biotechnology, 28(12), 1251–1255.CrossRefPubMedGoogle Scholar
  20. Chapman, A. R. (2009). Towards an understanding of the right to enjoy the benefits of scientific progress and its applications. Journal of Human Rights, 8(1), 1–36. doi: 10.1080/14754830802701200.CrossRefGoogle Scholar
  21. Chi-Ham, C. L., Boettiger, S., Figueroa-Balderas, R., Bird, S., Geoola, J. N., Zamora, P., et al. (2012). An intellectual property sharing initiative in agricultural biotechnology: Development of broadly accessible technologies for plant transformation. Plant Biotechnology Journal, 10(5), 501–510.CrossRefPubMedGoogle Scholar
  22. Cohen, S. N., Chang, A. C. Y., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences, 70(11), 3240–3244.CrossRefGoogle Scholar
  23. Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2002). Links and impacts: The influence of public research on industrial R&D. Management Science, 48(1), 1–23.CrossRefGoogle Scholar
  24. Colyvas, J., Crow, M., Gelijns, A., Mazzoleni, R., Nelson, R. R., Rosenberg, N., et al. (2002). How do university inventions get into practice? Management Science, 48(1), 61–72.CrossRefGoogle Scholar
  25. Crespi, G., D’Este, P., Fontana, R., & Geuna, A. (2011). The impact of academic patenting on university research and its transfer. Research Policy, 40(1), 55–68.CrossRefGoogle Scholar
  26. Czarnitzki, D., Grimpe, C., & Toole, A. A. (2014). Delay and secrecy: Does industry sponsorship jeopardize disclosure of academic research? (0960-6491). Retrieved from
  27. Dam, K. W. (1999). Intellectual property and the academic enterprise. University of Chicago Law School, John M. Olin Law & Economics Working Paper, (68).Google Scholar
  28. David, P. A. (2004). Can “open science” be protected from the evolving regime of IPR protections? Journal of Institutional and Theoretical Economics-Zeitschrift Fur Die Gesamte Staatswissenschaft, 160(1), 9–34. doi: 10.1628/093245604773861069.CrossRefGoogle Scholar
  29. Eisenberg, R. S. (2000). Re-examining the role of patents in appropriating the value of DNA sequences. Emory LJ, 49, 783.Google Scholar
  30. Fabrizio, K. R., & Di Minin, A. (2008). Commercializing the laboratory: Faculty patenting and the open science environment. Research Policy, 37(5), 914–931.CrossRefGoogle Scholar
  31. Farrelly, C. (2007). Gene patents and justice. The Journal of Value Inquiry, 41(2), 147–163.CrossRefGoogle Scholar
  32. Feldman, M. P., Colaianni, A., Kang, L., Krattiger, A., Mahoney, R. T., Nelsen, L.,… & Graff, G. D. (2007). Lessons from the commercialization of the Cohen-Boyer patents: The Stanford University licensing program. Intellectual property management in health and agricultural innovation: A handbook of best practices, 1&2, 1797–1807.Google Scholar
  33. Feller, I. (1990). Universities as engines of R&D-based economic growth: They think they can. Research Policy, 19(4), 335–348.CrossRefGoogle Scholar
  34. Geuna, A., & Nesta, L. J. J. (2006). University patenting and its effects on academic research: The emerging European evidence. Research Policy, 35(6), 790–807.CrossRefGoogle Scholar
  35. Grimes, H. D., Payumo, J., & Jones, K. (2011). Opinion: Food security needs sound IP. The Scientist. Available at: Accessed on Oct 11, 2016.
  36. Grushcow, J. M. (2004). Measuring secrecy: A cost of the patent system revealed. The Journal of Legal Studies, 33(1), 59–84.CrossRefGoogle Scholar
  37. Gulbrandsen, M., & Smeby, J.-C. (2005). Industry funding and university professors’ research performance. Research Policy, 34(6), 932–950. doi: 10.1016/j.respol.2005.05.004.CrossRefGoogle Scholar
  38. Heller, M. A., & Eisenberg, R. S. (1998). Can patents deter innovation? The anticommons in biomedical research. Science, 280(5364), 698–701. doi: 10.1126/science.280.5364.698.CrossRefPubMedGoogle Scholar
  39. Henderson, R., Jaffe, A. B., & Trajtenberg, M. (1998). Universities as a source of commercial technology: A detailed analysis of university patenting, 1965–1988. Review of Economics and Statistics, 80(1), 119–127.CrossRefGoogle Scholar
  40. Huang, K. G., & Murray, F. E. (2009). Does patent strategy shape the long-run supply of public knowledge? Evidence from human genetics. Academy of Management Journal, 52(6), 1193–1221.CrossRefGoogle Scholar
  41. Jensen, P. H., Thomson, R., & Yong, J. (2011). Estimating the patent premium: Evidence from the Australian Inventor Survey. Strategic Management Journal, 32(10), 1128–1138.CrossRefGoogle Scholar
  42. Jensen, P. H., & Webster, E. (2014). Patents, transaction costs and academic research project choice. Economic Record, 90(289), 179–196.CrossRefGoogle Scholar
  43. Krimsky, S., & Nader, R. (2004). Science in the private interest: Has the lure of profits corrupted biomedical research? Lanham: Rowman & Littlefield.Google Scholar
  44. Kryder, R. D., Kowalski, S. P., & Krattiger, A. F. (2000). The intellectual and technical property components of pro-Vitamin A rice (GoldenRice): A Preliminary Freedom-to-Operate Review. NY: ISAAA Ithaca.Google Scholar
  45. Larsen, M. T. (2011). The implications of academic enterprise for public science: An overview of the empirical evidence. Research Policy, 40(1), 6–19.CrossRefGoogle Scholar
  46. Lichtman, D., Baker, S., & Kraus, K. (2000). Strategic disclosure in the patent system. Vanderbilt Law Review, 53, 2175.Google Scholar
  47. Lissoni, F., Llerena, P., McKelvey, M., & Sanditov, B. (2008). Academic patenting in Europe: New evidence from the KEINS database. Research Evaluation, 17(2), 87–102.CrossRefGoogle Scholar
  48. Markiewicz, K. R., & DiMinin, A. (2004). Commercializing the laboratory: The relationship between faculty patenting and publishing. UC Berkeley. Available from
  49. Marshall, E. (2000). A deluge of patents creates legal hassles for research. Science, 288(5464), 255–257.CrossRefPubMedGoogle Scholar
  50. Matthews, K. R. W., & Cuchiara, M. L. (2014). Gene patents, patenting life and the impact of court rulings on US stem cell patents and research. Regenerative medicine, 9(2), 191–200.CrossRefPubMedGoogle Scholar
  51. McBratney, A., Nielsen, K., & McMillan, F. (2004). Australia experiments with ‘experimental use’ exemption. Nature Biotechnology, 22(8), 1023–1025.CrossRefPubMedGoogle Scholar
  52. McGauran, N., Wieseler, B., Kreis, J., Schüler, Y.-B., Kölsch, H., & Kaiser, T. (2010). Reporting bias in medical research-a narrative review. Trials, 11, 37 doi: 10.1186/1745-6215-11-37.
  53. Merrill, S. A., & Mazza, A.-M. (2011). Managing university intellectual property in the public interest. Washington, D.C.: National Academies Press.Google Scholar
  54. Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001). The growth of patenting and licensing by U.S. universities: An assessment of the effects of the Bayh-Dole act of 1980. Research Policy, 30(1), 99–119. doi: 10.1016/S0048-7333(99)00100-6.CrossRefGoogle Scholar
  55. Murdoch, C. J., & Caulfield, T. (2009). Commercialization, patenting and genomics: Researcher perspectives. Genome Medicine, 1(2), 22. doi: 10.1186/gm22.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31(8), 1389–1403.CrossRefGoogle Scholar
  57. Murray, F., Aghion, P., Dewatripont, M., Kolev, J., & Stern, S. (2009). Of mice and academics: Examining the effect of openness on innovation (Working paper No. 14819). Retrieved from National Bureau of Economic Research website:
  58. Murray, F., & Stern, S. (2007). Do formal intellectual property rights hinder the free flow of scientific knowledge? An empirical test of the anti-commons hypothesis. Journal of Economic Behavior & Organization, 63(4), 648–687.CrossRefGoogle Scholar
  59. Nelson, R. R. (2001). Observations on the post-Bayh-Dole rise of patenting at American Universities. The Journal of Technology Transfer, 26(1), 13–19.CrossRefGoogle Scholar
  60. Nelson, R. R. (2004). The market economy, and the scientific commons. Research Policy, 33(3), 455–471.CrossRefGoogle Scholar
  61. Nelson, R. R. (2006). Reflections on “The Simple Economics of Basic Scientific Research”: Looking back and looking forward. Industrial and Corporate Change, 15(6), 903–917.CrossRefGoogle Scholar
  62. Nottenburg, C., & Rodríguez, C. R. (2008). Agrobacterium-mediated gene transfer: A lawyer’s perspective Agrobacterium: From Biology to Biotechnology (pp. 699–735). Springer.Google Scholar
  63. Piccaluga, A., Balderi, C., & Daniele, C. (2012). The ProTon Europe Ninth Annual Survey Report (fiscal year 2011). ProTon, December.Google Scholar
  64. Resnik, D. B. (2001). DNA patents and human dignity. The Journal of Law, Medicine & Ethics, 29(1), 152–165. doi: 10.1111/j.1748-720X.2001.tb00703.x.CrossRefGoogle Scholar
  65. Rosenberg, S. A. (1996). Secrecy in medical research. The New England journal of medicine, 334(6), 392.CrossRefPubMedGoogle Scholar
  66. Rowe, E. A. (2011). Patents, genetically modified food, and IP overreaching. Southern Methodist University Law Review, 64, 859.Google Scholar
  67. Sampat, B. N. (2006). Patenting and US academic research in the 20th century: The world before and after Bayh-Dole. Research Policy, 35(6), 772–789. doi: 10.1016/j.respol.2006.04.009.CrossRefGoogle Scholar
  68. Sarma, L. (1999). Biopiracy: Twentieth century imperialism in the form of international agreements. Tulane Journal of International and Comparative Law, 13, 107.Google Scholar
  69. Shibayama, S. (2012). Conflict between entrepreneurship and open science, and the transition of scientific norms. The Journal of Technology Transfer, 37(4), 508–531.CrossRefGoogle Scholar
  70. Thursby, J. G., & Thursby, M. C. (2004). Are faculty critical? Their role in university Industry licensing. Contemporary Economic Policy, 22(2), 162–178.CrossRefGoogle Scholar
  71. Walsh, J., Cohen, W., & Arora, A. (2003a). Patenting and licensing of research tools and biomedical innovation. In W. M. Cohen & S. Merrill (Eds.), Patents in the knowledge based economy (pp. 285–340). Washington, DC: National Academies.Google Scholar
  72. Walsh, J. P., Arora, A., & Cohen, W. M. (2003b). Working through the patent problem. Science. 299(5609), 1021–1022.Google Scholar
  73. Walsh, J. P., Cohen, W. M., & Cho, C. (2007). Where excludability matters: Material versus intellectual property in academic biomedical research. Research Policy, 36(8), 1184–1203.CrossRefGoogle Scholar
  74. Waltz, E. (2009). Under wraps. Nature Biotechnology, 27(10), 880–882.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Murray State UniversityMurrayUSA

Personalised recommendations