Advertisement

A Synthesis of Spatial Models for Multivariate Count Responses

  • Yiyi WangEmail author
  • Kara Kockelman
  • Amir Jamali
Chapter
Part of the Advances in Spatial Science book series (ADVSPATIAL)

Abstract

This chapter provides a synthesis of spatial data mining models for analyzing multivariate count responses. Geo-referenced multivariate count responses are common in regional science (e.g., registered vehicle counts by body type and firm/job counts by industry type), but are computationally difficult to model—especially when sample size is large. This chapter synthesizes relevant research and offers lessons learned and best practices for future research.

Keywords

Spatial econometric model Spatial autocorrelation Multivariate response Bayesian estimation 

References

  1. Aldor-Noiman S, Brown LD, Fox EB, Stine RA (2013) Spatio-temporal low count processes with application to violent crime events. Cornell University Library. Accessed at URL: http://arxiv.org/pdf/1304.5642.pdf
  2. Alfo M, Nieddu L, Vicari D (2009) Finite mixture models for mapping spatially dependent disease counts. Biom J 51(1):84–97CrossRefGoogle Scholar
  3. Anderson C, Lee D, Dean N (2014) Identifying clusters in Bayesian disease mapping. Biostatsitics 15:457–469CrossRefGoogle Scholar
  4. Anselin, L. (2001) Chapter 14. Spatial econometrics. A companion to theoretical econometrics. Blackwell Publishing Ltd. http://web.pdx.edu/~crkl/WISE/SEAUG/papers/anselin01_CTE14.pdf
  5. Anselin L (2010) Thirty years of spatial econometrics. Pap Reg Sci 89:3–25CrossRefGoogle Scholar
  6. Atkinson P, German S, Sear D, Clark M (2003) Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geogr Anal 35(1):58–82CrossRefGoogle Scholar
  7. Aufhauser E, Fischer MM (1985) Log-linear modeling and spatial analysis. Environ Plan A 17(7):931–951CrossRefGoogle Scholar
  8. Aguero-Valverde J, Jovanis PP (2010) Spatial correlation in multilevel crash frequency models effects of different neighboring structures. Transp Res Rec J Transp Res Board 2165:21–32. doi: 10.3141/2165-03
  9. Aguero-Valverde J, Kun-Feng (Ken) W, Eric TD (2016) A multivariate spatial crash frequency model for identifying sites with promise based on crash types. Accid Anal Prev 87:8–16Google Scholar
  10. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall–CRC, Boca RatonGoogle Scholar
  11. Bansal P, Kockelman K, Wang Y (2015) Hybrid electric vehicle ownership and fuel economy across texas: application of spatial models. Transportation Research Record No. 2495: 53–64Google Scholar
  12. Barua S, El-Basyouny K, Islam MT (2014) A full Bayesian multivariate count data model of collision severity with spatial correlation. Anal Methods Accid Res 3-4:28–43Google Scholar
  13. Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann Inst Stat Math 43:1–59CrossRefGoogle Scholar
  14. Bhat CR (2011) The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models. Transp Res B 45:923–939Google Scholar
  15. Bhat CR, Born K, Sidharthan R, Bhat PC (2014) A count data model with endogenous covariates: formulation and application to roadway crash frequency at intersections. Anal Methods Accid Res 1:53–71Google Scholar
  16. Boulieri A, Liverani S, de Hoogh K, Blangiardo M (2017) A space–time multivariate Bayesian model to analyze road traffic accidents by severity. J Royal Stat Soc A 180(1):119–139Google Scholar
  17. Case B, Clapp J, Dubin R, Rodriguez M (2003) Modeling Spatial and temporal house price patterns: a comparison of four models. J Real Estate Financ Econ 29(2):167–191CrossRefGoogle Scholar
  18. Castro M, Paleti R, Bhat CR (2012) A latent variable representation of count data models to accommodate spatial and temporal dependence: application to predicting crash frequency at intersections. Transp Res B 46:253–272Google Scholar
  19. Chakir R, Parent O (2009) Determinants of land use changes: a spatial multinomial probit approach. Pap Reg Sci 88(2):327–344CrossRefGoogle Scholar
  20. Chen D, Wang Y, Kockelman K (2013) Where are the electrical vehicles? A spatial model for vehicle-choice count data. J Transp Geogr 43:181–188CrossRefGoogle Scholar
  21. Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344CrossRefGoogle Scholar
  22. Cressie NA (1991) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  23. Deutsch CV, Journel AG (1997) GSLIB: geostatistical software library and user’s guide (applied geostatistics series), 2nd edn. Oxford University Press, New YorkGoogle Scholar
  24. Du H, Mulley C (2012) Understanding spatial variations in the impact of accessibility on land value using geographically weighted regression. J Transp Land Use 5(2):46–59Google Scholar
  25. Eberly LE, Carlin BP (2000) Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models. Stat Med 19:2279–2294Google Scholar
  26. Finley AO, Banergee S, Gelfand A (2013) spBayes for large univariate and multivariate point-referenced spatio-temporal data models. Working paper available at https://arxiv.org/pdf/1310.8192.pdf
  27. Gelfand A, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4(1):11–25CrossRefGoogle Scholar
  28. Goodchild MF, Haining RP (2003) GIS and spatial data analysis: converging perspectives. Papers Reg Sci 83:363Google Scholar
  29. Goodkind AL, Coggins JS, Marshall JD (2014) A spatial model of air pollution: the impact of the concentration-response function. J Assoc Environ Resour Econ 1(4):451–479Google Scholar
  30. Griffith D (2000) A linear regression solution to the spatial autocorrelation problem. J Geogr Syst 2:141–156CrossRefGoogle Scholar
  31. Gupta MR, Chen Y (2010) Theory and use of the EM algorithm. doi: 10.1561/2000000034
  32. Hadayeghi A, Shalaby A, Persaud B (2009) Development of planning level 2 transportation safety tools using geographically weighted poisson regression. Accid Anal Prev 42(2):676–688CrossRefGoogle Scholar
  33. Jin X, Carlin BP, Banerjee S (2005) Generalized hierarchical multivariate CAR models for areal data. Biometrics 61(4):950–961CrossRefGoogle Scholar
  34. Karunanayake CP (2007) Multivariate poisson hidden Markov models for analysis of spatial counts. Doctor of Philosophy thesis, Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, CanadaGoogle Scholar
  35. Kramer MR, Williamson R (2013) Multivariate Bayesian spatial model of preterm birth and cardiovascular disease among Georgia women: evidence for life course social determinants of health. Spat Spatiotemporal Epidemiol 6:25–35Google Scholar
  36. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139Google Scholar
  37. Lampos V, Andrew C, Miller SC, Stefansen C (2015) Advances in nowcasting influenza-like illness rates using search query logs. Scientific reports 5, Article number: 12760. Available at http://www.nature.com/articles/srep12760
  38. LeSage J, Pace K (2009) Introduction to spatial econometrics. Chapman & Hall/CRC/Taylor & Francis Group, Boca Raton, FLCrossRefGoogle Scholar
  39. Levine L (2009) Introduction to the special issue on Bayesian journey to crime modeling. J Investig Psychol Offender Profiling 6(3):167–185CrossRefGoogle Scholar
  40. Levine N, Kim K, Nitz L (1995a) Spatial analysis of Honolulu motor vehicle crashes: I. Spatial patterns. Accid Anal Prev 27(5):663–674CrossRefGoogle Scholar
  41. Levine N, Kim K, Nitz L (1995b) Spatial analysis of Honolulu motor vehicle crashes: II. Zonal generators. Accid Anal Prev 27(5):675–685CrossRefGoogle Scholar
  42. Leyland A, Langford I, Rasbash J, Goldstein H (2000) Multivariate spatial models for event data. Stat Med 19:2469–2478Google Scholar
  43. Liesenfeld R, Richard JF, Vogler J (2015) Likelihood evaluation of high-dimensional spatial latent Gaussian models with Non-Gaussian response variables. Available at SSRN: SSRN-id2196041~2Google Scholar
  44. Lu Y (1998) Spatial cluster analysis for point data: location quotients versus kernel density. Department of Geography, State University of New York at Buffalo. http://dusk.geo.orst.edu/ucgis/web/oregon/papers/lu.htm
  45. Miaou S-P, Song J, Mallick B (2003) Roadway traffic crash mapping: a space-time modeling approach. J Transp Stat 6(1):33–58Google Scholar
  46. Nakaya T, Fotheringham S, Brunsdon C, Charlton M (2010) Geographically weighted poisson regression for disease association mapping. Stat Med 24(17):2695–2717CrossRefGoogle Scholar
  47. Narayanamoorthy S, Paleti R, Bhat CR (2013) On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level. Transp Res B 55:245–264Google Scholar
  48. Ognev-Himmelberger Y, Pearsall H, Rakshit R (2009) Concrete evidence and geographically weighted regression: a regional analysis of wealth and the land cover in Massachusetts. Appl Geogr 29(4):478–487CrossRefGoogle Scholar
  49. Páez A (2006) Exploring contextual variations in land use and transport analysis using a 35 probit model with geographical weights. J Transp Geogr 14:167–176CrossRefGoogle Scholar
  50. Park BJ (2010) Application of finite mixture models for vehicle crash data analysis. Texas A&M University Dissertation. URL: http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2010-05-7667/PARK-DISSERTATION.pdf?sequence=2. Accessed 30 May 2016
  51. Platt R (2004) Global and local analysis of fragmentation in a mountain region of Colorado. Agric Ecosyst Environ 101:207–218CrossRefGoogle Scholar
  52. Preis T, Moat HS (2014) Adaptive nowcasting of influenza outbreaks using google searches. Royal Society Open Science article. doi:10.1098/rsos.140095.Google Scholar
  53. Schmidt AM, Rodriguez MA (2010) Modelling multivariate counts varying continuously in space. Book chapter in Bayesian Statistics, 9. ISBN: 9780199694587Google Scholar
  54. Simoes P, Natario I (2016) Spatial econometric approaches for count data: an overview and new directions. IntJ Soc Behav Educ Econ Bus Ind Eng 10(1):348–356Google Scholar
  55. Smith A (2015) Crowdsourcing pedestrian and cyclist activity data. US Department of Transportation Federal Highway Administration Report DTFHGI-11-H-00024. Available at http://www.pedbikeinfo.org/cms/downloads/PBIC_WhitePaper_Crowdsourcing.pdf
  56. Song JJ, Ghosh M, Miaou S, Mallick B (2006) Bayesian multivariate spatial models for roadway traffic crash mapping. J Multivar Anal 97(1):246–273CrossRefGoogle Scholar
  57. Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS user manual version 1.4. URL: http://voteview.org/manual14.pdf
  58. Vinatier F, Tixier P, Duyck PF, Lescourret F (2011) Factors and mechanisms explaining spatial heterogeneity: a review of methods for insect populations. Methods Ecol Evol 2(1):11–22CrossRefGoogle Scholar
  59. Waller LA, Carlin BP, Xia H, Gelfand AE (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92(438):607–617Google Scholar
  60. Wang X, Kockelman KM (2009) Application of the dynamic spatial ordered probit model: patterns of land development change in Austin, Texas. Pap Reg Sci 88(2):345–366CrossRefGoogle Scholar
  61. Wang Y, Kockelman K (2013) A Poisson-lognormal conditional autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods. Accid Anal Prev 60:71–84CrossRefGoogle Scholar
  62. Wang Y, Kockelman K, Damien P (2014) A spatial autoregressive multinomial probit model for anticipating land use change in Austin, Texas. Ann Reg Sci 52:251–278CrossRefGoogle Scholar
  63. Wang Y, Kockelman K, Wang X (2011) Anticipating land use change using geographically weighted regression models for discrete response. Transportation Research Record No. 2245:111–123Google Scholar
  64. Weir M, Weintraub J, Humphreys E, Seto E, Bhatia R (2009) An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accid Anal Prev 41:137–145CrossRefGoogle Scholar
  65. Zhao F, Park N (2004) Using geographically weighted regression models to estimate annual average daily traffic. Transp Res Rec 1879:99–107CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Civil Engineering DepartmentMontana State UniversityBozemanUSA
  2. 2.Department of Civil, Architectural, and Environmental EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations