Skip to main content

Fiber and Healthy Dietary Patterns in Weight Regulation

  • Chapter
  • First Online:
Dietary Fiber in Health and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

During the last several decades, there has been an increased exposure to higher energy-dense and lower fiber-containing foods and increasingly sedentary lifestyles, which have led to net habitual positive energy balances and weight gain in Western populations. For overweight or obese individuals who successfully lose weight, as many as 80% typically drift back to their original weight or more because after weight loss there are an array of metabolic regulatory processes at work to promote weight regain, so it is difficult to maintain weight loss. Consequently, maintaining a healthy weight is a daily effort but healthy fiber-rich dietary patterns can help to promote satiety and reduce overall dietary energy density to assist in weight control.

Dietary fiber intake is inversely associated with obesity risk, and populations with higher fiber diets tend to be leaner than those with low fiber diets.

The human gastrointestinal and energy metabolism regulatory systems evolved on pre-agriculture high fiber diets.

Prospective cohort studies suggest that increased total fiber intake by >12 g/day to >25 g fiber/day, especially as a replacement for refined low fiber food, can prevent weight gain by 3.5–5.5 kg each decade.

Randomized controlled trials (RCTs) show that adequate fiber intake >28 g fiber/day from fiber-rich diets can significantly reduce body weight and waist circumference (WC) compared to low fiber Western diets (<20 g fiber/day). Fiber-rich diets are usually more effective at promoting weight loss than are fiber supplements.

RCTs show that healthy fiber-rich dietary patterns such as the Mediterranean (MedDiet), Dietary Approaches to Stop Hypertension (DASH), New Nordic, and vegetarian diets do not result in weight gain and high adherence to these diets can support weight loss and lower WC compared to control diets such as low fat or Western diets in overweight or obese individuals.

Biological mechanisms associated with adequate fiber intake and healthy dietary patterns, in body weight regulation include effects on lowering diet energy density directly or by displacing higher energy-dense processed foods, promoting postprandial satiety, reducing metabolizable energy, and triggering other colonic microbiota or metabolic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Obesity and overweight. Geneva; 2014. www.who.int/mediacentre/factsheets/fs311en/. Accessed 18 Jan 2015.

  2. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.

    Article  PubMed  Google Scholar 

  3. Moehlecke M, Canani LH, Lucas Oliveira L, et al. Determinants of body weight regulation in humans. Arch Endocrinol Metab. 2016;60(2):152–62.

    Article  PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention. Overweight and obesity: causes and consequences. 2012. http://www.cdc.gov/obesity/adult/causes/index.html. Accessed 21 Feb 2015.

  5. Hill JO. Can a small-changes approach help address the obesity epidemic? A report of the joint task force of the American Society for Nutrition, Institute of Food Technologists, and international food information council. Am J Clin Nutr. 2009;89:477–84.

    Article  CAS  PubMed  Google Scholar 

  6. Zhai F, Wang H, Wang Z, et al. Closing the energy gap to prevent weight gain in China. Obes Rev. 2008;9(Suppl 1):107–12.

    Article  PubMed  Google Scholar 

  7. Centers for Disease Control and Prevention. Low energy dense foods and weight management: cutting calories while controlling hunger. Research to Practice Series, No 5. 2015. http://www.cdc.gov/nccdphp/dnpa/nutrition/pdf/r2p_energy_density.pdf. Accessed 21 Feb.

  8. Davis JN, Hodges VA, Gillham MB. Normal-weight adults consume more fiber and fruit than their age and height matched overweight/obese counterparts. J Am Diet Assoc. 2006;106:835–40.

    Article  Google Scholar 

  9. Mozaffarian D, Hao T, Rimm EB, et al. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;363:2392–404.

    Article  Google Scholar 

  10. Rolls BJ. What is the role of portion in weight management? Int J Obes. 2014;38:S1–8.

    Article  Google Scholar 

  11. Vernarelli JA, Mitchell DC, Rolls BJ, Hartman TJ. Dietary energy density is associated with obesity and other biomarkers of chronic disease in US adults. Eur J Nutr. 2015;54(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  12. Karl JP, Roberts SB. Energy density, energy intake and body weight regulations in adults. Adv Nutr. 2014;5:835–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raynor HA, Jeffery RW, Phelan S, et al. Amount of food group variety consumed in the diet and long-term weight loss maintenance. Obes Res. 2005;13(5):883–90.

    Article  PubMed  Google Scholar 

  14. Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Advisory Guidelines Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 2: Dietary patterns, foods and nutrients, and health outcomes. 2015; p. 1–33.

    Google Scholar 

  15. Schneider BC, Dumith SC, Orlandi SP, Assuncao MCF. Diet and body fat in adolescence and early adulthood: a systematic review of longitudinal studies. Cien Saude Colet. 2017;22(5):1539–52.

    Article  PubMed  Google Scholar 

  16. de Mutsert R, Sun Q, Willett WC, et al. Overweight in early adulthood, adult weight change, and risk of type 2 diabetes, cardiovascular diseases, and certain cancers in men: a cohort study. Am J Epidemiol. 2014;179:1353–65.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wilson PW, D’Agostino RB, Sullivan L, et al. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162:1867–72.

    Article  PubMed  Google Scholar 

  18. Wang YC, McPherson K, Marsh T, et al. Health and economic burden of projected obesity trends in the USA and the UK. Lancet. 2011;378:815–25.

    Article  PubMed  Google Scholar 

  19. Gilhooly CH, Das SK, Golden JK, et al. Food cravings and energy regulation: the characteristics of craved foods and their relationship with eating behaviors and weight change during 6 months of dietary energy restriction. Int J Obesity. 2007;31:1849–58.

    Article  CAS  Google Scholar 

  20. Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82(Suppl):222S–5S.

    CAS  PubMed  Google Scholar 

  21. Raynor HA, Van Walleghen EL, Bachman JL. Dietary energy density and successful weight loss maintenance. Eat Behav. 2011;12(2):119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  22. MacLean PS, Higgins JA, Giles ED, et al. The role for adipose tissue in weight regain after weight loss. Obes Rev. 2015;16(Suppl 1):45–54.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mariman ECM. An adipobiological model for weight regain after weight loss. Adipobiology. 2011;3:7–13.

    Google Scholar 

  24. Maskarinec G, Takata Y, Pagano I, et al. Trends and dietary determinants of overweight and obesity in a multiethnic population. Obesity (Silver Spring). 2006;14:717–26.

    Article  Google Scholar 

  25. Ma Y, Olendzki BC, Wang J, et al. Single-component versus multi-component dietary goals for the metabolic syndrome: a randomized trial. Ann Intern Med. 2015;162:248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eaton SB, Konner MJ, Cordain L. Diet-dependent acid load, Paleolithic nutrition, and evolutionary health promotion. Am J Clin Nutr. 2010;91:295–7.

    Article  CAS  PubMed  Google Scholar 

  27. Jew S, Abumweis SS, Jones PJH. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of disease prevention. J Med Food. 2009;12(5):925–34.

    Article  CAS  PubMed  Google Scholar 

  28. Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc. 2015;74(3):328–336. 1–9.

    Google Scholar 

  29. Deehan EC, Walter J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab. 2016;27(5):239–41.

    Article  CAS  PubMed  Google Scholar 

  30. Institute of Medicine, Food and Nutrition Board. Chapter 7: dietary reference intakes: energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein, and amino acids. In:Dietary, functional, and total fiber. Washington, DC: National Academies Press; 2005. p. 339–421.

    Google Scholar 

  31. Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Advisory Guidelines Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 1: Food and nutrient intakes, and health: current status and trends. 2015; Figure D1.2:131.

    Google Scholar 

  32. Dahl WJ, Stewart ML. Position of the academy of nutrition and dietetics: health implications of dietary fiber. J Acad Nutr Diet. 2015;115:1861–70.

    Article  PubMed  Google Scholar 

  33. Grooms KN, Ommerborn MJ, Quyen D, et al. Dietary fiber intake and cardiometabolic risk among US adults, NHANES 1999-2010. Am J Med. 2013;126(12):1059–67.

    Article  CAS  PubMed  Google Scholar 

  34. Lairon D. Dietary fiber and control of body weight. Nutr Metab Cardiovasc Dis. 2007;17:1–5.

    Article  PubMed  Google Scholar 

  35. Slavin JL. Dietary fiber and body weight. Nutrition. 2005;21:411–8.

    Article  PubMed  Google Scholar 

  36. Fogelholm M, Anderssen S, Gunnarsdottir I, Lahti-Koski M. Dietary macronutrients, and food consumption as determinants of long-term weight change in adult populations: a systematic literature review. Food Nutr Res. 2012;56:19103.

    Article  Google Scholar 

  37. European Food Safety Authority (EFSA). Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010;8(3):1462.

    Google Scholar 

  38. Rautiainen S, Wang L, Lee I-M, et al. Higher intake of fruit, but not vegetables or fiber, at baseline is associated with lower risk of becoming overweight or obese in middle-aged and older women of normal BMI at baseline. J Nutr. 2015;145:960–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fischer K, Moewes D, Koch M, et al. MRI-determined total volumes of visceral and subcutaneous abdominal and trunk adipose tissue are differentially and sex-dependently associated with patterns of estimated usual nutrient intake in a northern German population. Am J Clin Nutr. 2015;101:794–807.

    Article  CAS  PubMed  Google Scholar 

  40. Lin Y, Huybrechts I, Vandevijvere S, et al. Fibre intake among the Belgian population by sex–age and sex–education groups and its association with BMI and waist circumference. Br J Nutr. 2011;105:1692–703.

    Article  CAS  PubMed  Google Scholar 

  41. Du H, van der A DL, Boshuizen HC, et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr. 2010;91:329–36.

    Article  CAS  PubMed  Google Scholar 

  42. Romaguera D, Angquist L, Du H, et al. Dietary determinants of changes in waist circumference adjusted for body mass index—a proxy measure of visceral adiposity. PLoS One. 2010;5(7):e11588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Davis JN, Alexander KE, Ventura EE, et al. Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am J Clin Nutr. 2009;90:1160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tucker LA, Thomas KS. Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr. 2009;139:576–81.

    Article  CAS  PubMed  Google Scholar 

  45. Koh-Banerjee P, Franz M, Sampson L, et al. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-yr weight gain among men. Am J Clin Nutr. 2004;80:1237–45.

    CAS  PubMed  Google Scholar 

  46. Koh-Banerjee P, Chu N-F, Spiegelman DM, et al. Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16,587 US men. Am J Clin Nutr. 2003;78:719–27.

    CAS  PubMed  Google Scholar 

  47. Liu S, Willett WC, Manson JE, et al. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr. 2003;78:920–7.

    CAS  PubMed  Google Scholar 

  48. Ludwig DS, Pereira MA, Kroenke CH, et al. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA. 1999;282:1539–46.

    Article  CAS  PubMed  Google Scholar 

  49. Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev. 2001;59(5):129–39.

    Article  CAS  PubMed  Google Scholar 

  50. Karimi G, Azadbakht L, Haghighatdoost F, Esmaillzadeh A. Low energy density diet, weight loss maintenance, and risk of cardiovascular disease following a recent weight reduction program: a randomized control trial. J Res Med Sci. 2016;21:32. doi:10.4103/1735-1995.181992.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Turner TF, Nance LM, Strickland WD, et al. Dietary adherence and satisfaction with a bean-based high-fiber weight loss diet: a pilot study. ISEN Obes. 2013;2013:915415. doi:10.1155/2013/915415.

    Google Scholar 

  52. Mecca MS, Moreto F, Burini FHP, et al. Ten-week lifestyle changing program reduces several indicators for metabolic syndrome in overweight adults. Diabetol Metab Syndr. 2012;4:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pal S, Khossousi A, Binns C, et al. The effect of a fibre supplement compared to a healthy diet on body composition, lipids, glucose, insulin and other metabolic syndrome risk factors in overweight and obese individuals. Br J Nutr. 2011;105:90–100.

    Article  CAS  PubMed  Google Scholar 

  54. Ferdowsian HR, Barnard ND, Hoover VJ, et al. A multicomponent intervention reduces body weight and cardiovascular risk at a GEICO corporate site. Am J Health Promot. 2010;24(6):384–7.

    Article  PubMed  Google Scholar 

  55. Lindstrom J, Peltonen M, Eriksson JG, et al. High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish diabetes prevention study. Diabetologia. 2006;49:912–20.

    Article  CAS  PubMed  Google Scholar 

  56. Liber A, Szajewska H. Effects of inulin-type fructans on appetite, energy intake, and body weight in children and adults: systematic review of randomized controlled trials. Ann Nutr Metab. 2013;63:42–54.

    Article  CAS  PubMed  Google Scholar 

  57. Wanders AJ, Van de Borne JJ, de Graaf C, et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev. 2011;12(9):724–39.

    CAS  PubMed  Google Scholar 

  58. Pal S, Ho S, Gahler RJ, Wood S. Effect on body weight and composition in overweight/obese Australian adults over 12 months consumption of two different types of fibre supplementation in a randomized trial. Nutr. Metab (Lond.). 2016;13:82. https://doi.org/10.1186/512986-016-0141-7.

    Article  Google Scholar 

  59. Hu X, Gao J, Zhang Q, et al. Soy fiber improves weight loss and lipid profile in overweight and obese adults: a randomized controlled trial. Mol Nutr Food Res. 2013;57:2147–54.

    Article  CAS  PubMed  Google Scholar 

  60. Salas-Salvado J, Farres X, Luque X, et al. Effect of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: a randomised trial. Br J Nutr. 2008;99:1380–7.

    Article  CAS  PubMed  Google Scholar 

  61. Howarth NC, Saltzman E, McCrory MA, et al. Fermentable and non-fermentable fiber supplements did not alter hunger, satiety or body weight in a pilot study of men and women consuming self-selected diets. J Nutr. 2003;133:3141–4.

    CAS  PubMed  Google Scholar 

  62. Shah RV, Murthy VL, Allison JP, et al. Diet and adipose tissue distributions: the multi-Ethnic study of Atherosclerosis. Nutr Metab Cardiovasc Dis. 2016;26:185–93.

    Article  CAS  PubMed  Google Scholar 

  63. Hu T, Jacobs DR, Larson NI, et al. Higher diet quality in adolescence and dietary improvements are related to less weight gain during the transition from adolescence to adulthood. J Pediatr. 2016;178:188–93.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Feliciano CEM, Tinker L, Manson JE, et al. Change in dietary patterns and change in waist circumference and DXA trunk fat among postmenopausal women. Obesity. 2016;24:2176–84. doi:10.1002/oby.21589.

    Article  Google Scholar 

  65. Fung TT, Pan A, Hou T, et al. Long-term change in diet quality is associated with body weight change in men and women. J Nutr. 2015;145(8):1850–6. doi:10.3945/jn.114.208785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lassale C, Fezeu L, Andreeva VA, et al. Association between dietary scores and 13-year weight change and obesity risk in a French prospective cohort. Int J Obes. 2012;36(11):1455–62.

    Article  CAS  Google Scholar 

  67. Wolongevicz DM, Zhu L, Pencina MJ, et al. Diet quality and obesity in women: the Framingham nutrition studies. Br J Nutr. 2010;103(8):1223–9.

    CAS  PubMed  Google Scholar 

  68. Esmaillzadeh A, Azadbakht L. Major dietary patterns in relation to general obesity and central adiposity among Iranian women. J Nutr. 2008;138:358–63.

    CAS  PubMed  Google Scholar 

  69. Schulz M, Nothlings U, Hoffmann K, et al. Identification of a food pattern characterized by high-fiber and low-fat food choices associated with low prospective weight change in the EPIC-Potsdam cohort. J Nutr. 2005;135:1183–9.

    CAS  PubMed  Google Scholar 

  70. Newby PK, Muller D, Hallfrisch J, et al. Dietary patterns and changes in body mass index and waist circumference in adults. Am J Clin Nutr. 2003;77:1417–25.

    CAS  PubMed  Google Scholar 

  71. Li Y, Roswall N, Ström P, et al. Mediterranean and Nordic diet scores and long-term changes in body weight and waist circumference: results from a large cohort study. Br J Nutr. 2015;114:2093–102.

    Article  CAS  PubMed  Google Scholar 

  72. Funtikova AN, Benıtez-Arciniega AA, Gomez SF, et al. Mediterranean diet impact on changes in abdominal fat and 10-year incidence of abdominal obesity in a Spanish population. Br J Nutr. 2014;111:1481–7. doi:10.1017/S0007114513003966.

    Article  CAS  PubMed  Google Scholar 

  73. May AM, Romaguera D, Travier N, et al. Combined impact of lifestyle factors on prospective change in body weight and waist circumference in participants of the EPIC-PANACEA study. PLoS One. 2012;7(11) doi:10.1371/journal.pone.0050712.

  74. Beunza JJ, Toledo E, Hu FB, et al. Adherence to the mediterranean diet, long-term weight change, and incident overweight or obesity: the Seguimiento Universidad de Navarra (SUN) cohort. Am J Clin Nutr. 2010;92:1484–93.

    Article  CAS  PubMed  Google Scholar 

  75. Romaguera D, Norat T, Vergnaud A-C, et al. Mediterranean dietary patterns and prospective weight change in participants of the EPIC-PANACEA project. Am J Clin Nutr. 2010;92:912–21.

    Article  CAS  PubMed  Google Scholar 

  76. Sanchez-Villegas A, Bes-Rastrollo M, Martinez-Gonzalez MA, Serra-Majem L. Adherence to a Mediterranean dietary pattern and weight gain in a follow-up study: the SUN cohort. Int J Obes. 2006;30:350–8.

    Article  CAS  Google Scholar 

  77. Mendez MA, Popkin BM, Jakszyn P, et al. Adherence to a Mediterranean diet is associated with reduced 3-year incidence of obesity. J Nutr. 2006;136:2934–8.

    CAS  PubMed  Google Scholar 

  78. Barak F, Falahi E, Keshteli AH, et al. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to obesity among Iranian female nurses. Public Health Nutr. 2014;18(4):705–12.

    Article  PubMed  Google Scholar 

  79. Berz JPB, Singer MR, Guo X, et al. Use of a DASH food group score to predict excess weight gain in adolescent girls in the National Growth and health study. Arch Pediatr Adolesc Med. 2011;165(6):540–6.

    Article  PubMed  Google Scholar 

  80. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32:791–6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Berkow SE, Barnard N. Vegetarian diets and weight status. Nutr Rev. 2006;64(4):175–88.

    Article  PubMed  Google Scholar 

  82. Mancini JG, Filion KB, Atallah R, Eisenberg MJ. Systematic review of the Mediterranean diet for long-term weight loss. Am J Med. 2016;129:407–15.

    Article  PubMed  Google Scholar 

  83. Huo R, Du T, Xu Y, et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr. 2014;4(11):e005497. doi:10.1136/bmjopen-2014-005497.

    Google Scholar 

  84. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and weight loss diet: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord. 2011;9(1):1–12.

    Article  PubMed  Google Scholar 

  85. Kastorini C-M, Milionis HJ, Esposito K, et al. The effect of mediterranean diet on metabolic syndrome and its components. A meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57(11):1299–313.

    Article  CAS  PubMed  Google Scholar 

  86. Estruch R, Martinez-Gonzalez MA, Corella D, et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4:666–76. doi:10.1016/S2213-8587(16)30085-7.

    Article  CAS  PubMed  Google Scholar 

  87. Alvarez-Perez J, Sanchez-Villegas A, Diaz-Benitez EM, et al. Influence of a Mediterranean dietary pattern on body fat distribution: results of the PREDIMED-Canarias intervention randomized trial. J Am Coll Nutr. 2016;35(6):568–80. doi:10.1080/07315724.2015.1102102.

    Article  CAS  PubMed  Google Scholar 

  88. Damasceno NRT, Sala-Vila A, Cofán M, et al. Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk. Atherosclerosis. 2013;230:347–53.

    Article  CAS  PubMed  Google Scholar 

  89. Shai I, Schwarzfuchs D, Henkin Y, et al. Weight loss with a low-carbohydrate, Mediterranean, or low fat diet. N Engl J Med. 2008;359:229–41.

    Article  CAS  PubMed  Google Scholar 

  90. Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome. A randomized trial. JAMA. 2004;292(12):1440–6.

    Article  CAS  PubMed  Google Scholar 

  91. Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289:1799–804.

    Article  CAS  PubMed  Google Scholar 

  92. Soltani S, Shirani F, Chitsazi MJ, Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Obes Rev. 2016;17:442–54.

    Article  PubMed  Google Scholar 

  93. Bertz F, Brekke HK, Ellegard L, et al. Diet and exercise weight-loss trial in lactating overweight and obese women. Am J Clin Nutr. 2012;96:698–05.

    Article  CAS  PubMed  Google Scholar 

  94. Bertz F, Winkvist A, Brekke HK. Sustainable weight loss among overweight and obese lactating women is achieved with an energy-reduced diet in line with dietary recommendations: results from the LEVA randomized controlled trial. J Acad Nutr Diet. 2015;115:78–86.

    Article  PubMed  Google Scholar 

  95. Poulsen SK, Due A, Jordy AB, et al. Health effect of the new Nordic diet in adults with increased waist circumference: a 6-mo randomized controlled trial. Am J Clin Nutr. 2014;99:35–45.

    Article  CAS  PubMed  Google Scholar 

  96. Huang R-Y, Huang C-C, Hu FB, Chavarro JE. Vegetarian diets and weight reduction: a meta-analysis of randomized controlled trials. J Gen Intern Med. 2016;31(1):109–16. doi:10.1007/s11606-015-3390-7.

    Article  PubMed  Google Scholar 

  97. Barnard ND, Levin SM, Yokoyama Y. A systematic review and meta-analysis of changes in body weight in clinical trials of vegetarian diets. J Acad Nutr Diet. 2015;115(6):954–69.

    Article  PubMed  Google Scholar 

  98. Turner-McGrievy GM, Davidson CR, Wingard EE, et al. Comparative effectiveness of plant-based diets for weight loss: a randomized controlled trial of five different diets. Nutrition. 2015;31:350–8.

    Article  PubMed  Google Scholar 

  99. Pereira MA, Ludwig DS. Dietary fiber and body-weight regulation. Observations and mechanism. Pediatr Clin North Am. 2001;48(4):969–80.

    Article  CAS  PubMed  Google Scholar 

  100. Food and Agriculture Organization of the United Nations. Food energy-methods of analysis and conversion factors. FAO Food Nutr Pap. 2003;77:59.

    Google Scholar 

  101. Livesey G. Energy values of unavailable carbohydrate and diets: an inquiry and analysis. Am J Clin Nutr. 1990;51(4):617–37.

    CAS  PubMed  Google Scholar 

  102. Hooper L, Abdelhamid A, Moore HJ, et al. Effect of reducing total fat intake on body weight: systematic review and meta-analysis of randomised controlled trials and cohort studies. BMJ. 2012;345:e7666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Oku T, Nakamura S. Evaluation of the relative available energy of several dietary fiber preparations using breath hydrogen evolution in healthy humans. J Nutr Sci Vitaminol. 2014;60:246–54.

    Article  CAS  PubMed  Google Scholar 

  104. McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1. What to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sanchez D, Miguel M, Aleixandre A. Dietary fiber, gut peptides, and adipocytokines. J Med Food. 2012;15(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  106. Holt SH, Miller JB. Particle size, satiety and the glycaemic response. Eur J Clin Nutr. 1994;48:496–502.

    CAS  PubMed  Google Scholar 

  107. Rebello CJ, Chu Y-F, Johnson WD, et al. The role of meal viscosity and oat β-glucan characteristics in human appetite control: a randomized crossover trial. Nutr J. 2014;13:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Vitaglione P, Lumaga RB, Stanzione A, et al. β-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term. Appetite. 2009;53:338–44.

    Article  CAS  PubMed  Google Scholar 

  109. Karhunen LJ, Juvonen KR, Flander SM, et al. A psyllium fiber enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults. J Nutr. 2010;140:737–44.

    Article  CAS  PubMed  Google Scholar 

  110. Bourdon I, Olson B, Backus R, et al. Beans, as a source of dietary fiber, increase cholecystokinin and apolipoprotein B48 response to test meals in men. J Nutr. 2001;131:1485–90.

    CAS  PubMed  Google Scholar 

  111. Beck EJ, Tosh SM, Batterham MJ, et al. Oat beta-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects. Mol Nutr Food Res. 2009;53:1343–51.

    Article  CAS  PubMed  Google Scholar 

  112. Martinez-Rodriguez R, Gil A. Nutrient-mediated modulation of incretin gene expression: a systematic review. Nutr Hosp. 2012;27:46–53.

    CAS  PubMed  Google Scholar 

  113. Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. In J Obes (Lond). 2013;37:625–33.

    Article  CAS  Google Scholar 

  114. Clark MJ, Slavin JL. The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr. 2013;32(3):200–11.

    Article  CAS  PubMed  Google Scholar 

  115. Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111:1147–61.

    Article  CAS  PubMed  Google Scholar 

  116. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Forum Nutr. 2013;5:1417–35.

    CAS  Google Scholar 

  117. Holscher HD, Caporaso JG, Hooda S, et al. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr. 2015;10(1):55–64.

    Article  CAS  Google Scholar 

  118. Karl JP, Saltzman E. The role of whole grains in body weight regulation. Adv Nutr. 2012;3:697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Miles CW. The metabolizable energy of diets differing in dietary fat and fiber measured in humans. J Nutr. 1992;122:306–11.

    CAS  PubMed  Google Scholar 

  120. Miles CW, Kelsay JL, Wong NP. Effect of dietary fiber on the metabolizable energy of human diets. J Nutr. 1988;118:107–1081.

    Google Scholar 

  121. Baer DJ, Rumpler WV, Miles CW, Fahey GC. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr. 1997;127:579–86.

    CAS  PubMed  Google Scholar 

  122. Cani PD, Lecourt E, Dewulf EM. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009;90:1236–43.

    Article  CAS  PubMed  Google Scholar 

  123. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15:189–96.

    Article  CAS  PubMed  Google Scholar 

  124. Kaji I, Karaki S, Kuwahara A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion. 2014;89:31–6.

    Article  CAS  PubMed  Google Scholar 

  125. Tarini J, Wolever TM. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab. 2010;35(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  126. Kasubuchi M, Hasegawa S, Hiramatsu T, et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Forum Nutr. 2015;7:2839–49.

    CAS  Google Scholar 

  127. Conterno L, Fava F, Viola R, Tuohy KM. Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr. 2011;6:241–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1. Fifty High-Fiber Foods Ranked by Amount of Fiber per Standard Food Portiona

Food

Standard portion size

Dietary fiber (g)

Calories (kcal)

Energy density (calories/g)

High-fiber bran ready-to-eat-cereal

1/3–3/4 cup (30 g)

9.1–14.3

60–80

2.0–2.6

Navy beans, cooked

1/2 cup cooked (90 g)

9.6

127

1.4

Small white beans, cooked

1/2 cup (90 g)

9.3

127

1.4

Shredded wheat ready-to-eat cereal

1–1 1/4 cup (50–60 g)

5.0–9.0

155–220

3.2–3.7

Black bean soup, canned

1/2 cup (130 g)

8.8

117

0.9

French beans, cooked

1/2 cup (90 g)

8.3

114

1.3

Split peas, cooked

1/2 cup (100 g)

8.2

114

1.2

Chickpeas (Garbanzo) beans, canned

1/2 cup (120 g)

8.1

176

1.4

Lentils, cooked

1/2 cup (100 g)

7.8

115

1.2

Pinto beans, cooked

1/2 cup (90 g)

7.7

122

1.4

Black beans, cooked

1/2 cup (90 g)

7.5

114

1.3

Artichoke, global or French, cooked

1/2 cup (84 g)

7.2

45

0.5

Lima beans, cooked

1/2 cup (90 g)

6.6

108

1.2

White beans, canned

1/2 cup (130 g)

6.3

149

1.1

Wheat bran flakes ready-to-eat cereal

3/4 cup (30 g)

4.9–5.5

90–98

3.1–3.3

Pear with skin

1 medium (180 g)

5.5

100

0.6

Pumpkin seeds. Whole, roasted

1 ounce (about 28 g)

5.3

126

4.5

Baked beans, canned, plain

1/2 cup (125 g)

5.2

120

0.9

Soybeans, cooked

1/2 cup (90 g)

5.2

150

1.7

Plain rye wafer crackers

2 wafers (22 g)

5.0

73

3.3

Avocado, Hass

1/2 fruit (68 g)

4.6

114

1.7

Apple, with skin

1 medium (180 g)

4.4

95

0.5

Green peas, cooked (fresh, frozen, canned)

1/2 cup (80 g)

3.5–4.4

59–67

0.7–0.8

Refried beans, canned

1/2 cup (120 g)

4.4

107

0.9

Mixed vegetables, cooked from frozen

1/2 cup (45 g)

4.0

59

1.3

Raspberries

1/2 cup (65 g)

3.8

32

0.5

Blackberries

1/2 cup (65 g)

3.8

31

0.4

Collards, cooked

1/2 cup (95 g)

3.8

32

0.3

Soybeans, green, cooked

1/2 cup (75 g)

3.8

127

1.4

Prunes, pitted, stewed

1/2 cup (125 g)

3.8

133

1.1

Sweet potato, baked

1 medium (114 g)

3.8

103

0.9

Multigrain bread

2 slices regular (52 g)

3.8

140

2.7

Figs, dried

1/4 cup (about 38 g)

3.7

93

2.5

Potato baked, with skin

1 medium (173 g)

3.6

163

0.9

Popcorn, air popped

3 cups (24 g)

3.5

93

3.9

Almonds

1 ounce (about 28 g)

3.5

164

5.8

Whole wheat spaghetti, cooked

1/2 cup (70 g)

3.2

87

1.2

Sunflower seed kernels, dry roasted

1 ounce (about 28 g)

3.1

165

5.8

Orange

1 medium (130 g)

3.1

69

0.5

Banana

1 medium (118 g)

3.1

105

0.9

Oat bran muffin

1 small (66 g)

3.0

178

2.7

Vegetable soup

1 cup (245 g)

2.9

91

0.4

Dates

1/4 cup (about 38 g)

2.9

104

2.8

Pistachios, dry roasted

1 ounce (about 28 g)

2.8

161

5.7

Hazelnuts or filberts

1 ounce (about 28 g)

2.7

178

6.3

Peanuts, oil roasted

1 ounce (about 28 g)

2.7

170

6.0

Quinoa, cooked

1/2 cup (90 g)

2.7

92

1.0

Broccoli, cooked

1/2 cup (78 g)

2.6

27

0.3

Potato baked, without skin

1 medium (145 g)

2.3

145

1.0

Baby spinach leaves

3 ounces (90 g)

2.1

20

0.2

Blueberries

1/2 cup (74 g)

1.8

42

0.6

Carrot, raw or cooked

1 medium (60 g)

1.7

25

0.4

  1. aDietary Guidelines Advisory Committee. Scientific Report of the 2010 Advisory Guidelines Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part B. Section 2: Total Diet. 2010; Table B2.4
  2. Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 1: Food and nutrient intakes and trends. 2015; 97–8; Table D1.8
  3. USDA National Nutrient Database for Standard Reference, Release 27. http://www.ars.usda.gov/nutrientdata. Accessed 17 February 2015

Appendix 2. Comparison of Common Dietary Patterns per 2000 kcal (Approximated Values)a

Components

Western dietary pattern (USA)

USDA base pattern

DASH diet pattern

Healthy Mediterranean pattern

Healthy vegetarian pattern (lacto-ovo based)

Vegan pattern

Emphasizes

Refined grains, low-fiber foods, red meats, sweets and solid fats

Vegetables, fruit, whole grain, and low-fat milk

Potassium-rich vegetables, fruits and low-fat milk products

Whole grains, vegetables, fruit, dairy products, olive oil, and moderate wine

Vegetables, fruit, whole grains, legumes, nuts, seeds, milk products, and soy foods

Plant foods: vegetables, fruits, whole grains, nuts, seeds, and soy foods

Includes

Processed meats, sugar sweetened beverages, and fast foods

Enriched grains, lean meat, fish, nuts, seeds, and vegetable oils

Whole grain, poultry, fish, nuts, and seeds

Fish, nuts, seeds, and pulses

Eggs, non-dairy milk alternatives, and vegetable oils

Non-dairy milk alternatives

Limits

Fruits and vegetables, whole grains

Solid fats and added sugars

Red meats, sweets, and sugar-sweetened beverages

Red meats, refined grains, and sweets

No red or white meats, or fish; limited sweets

No animal products

Estimated nutrients/components

 

Carbohydrates (% total kcal)

51

51

55

50

54

57

Protein (% total kcal)

16

17

18

16

14

13

Total fat (% total kcal)

33

32

27

34

32

30

Saturated fat (% total kcal)

11

8

6

8

8

7

Unsat. fat (% total kcal)

22

25

21

24

26

25

Fiber (g)

16

31

29+

31

35+

40+

Potassium (mg)

2800

3350

4400

3350

3300

3650

Vegetable oils (g)

19

27

25

27

19–27

18–27

Solid fats (g)

31

18

17

21

16

Sodium (mg)

3600

1790

1100

1690

1400

1225

Added sugar (g)

79 (20 tsp)

32 (8 tsp)

12 (3 tsp)

32 (8 tsp)

32 (8 tsp)

32 (8 tsp)

Plant food groups

Fruit (cup)

≤1.0

2.0

2.5

2.5

2.0

2.0

Vegetables (cup)

≤1.5

2.5

2.1

2.5

2.5

2.5

Whole grains (oz.)

0.6

3.0

4.0

3.0

3.0

3.0

Legumes (oz.)

1.5

0.5

1.5

3.0

3.0+

Nuts/seeds (oz.)

0.5

0.6

1.0

0.6

1.0

2.0

Soy products (oz.)

0.0

0.5

1.1

1.5

  1. aDietary Guidelines Advisory Committee. Scientific Report of the 2010 Advisory Guidelines Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part B. Section 2: Total Diet. 2010; Table B2.4
  2. Dietary Guidelines Advisory Committee. Scientific Report of the 2015Advisory Guidelines Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Appendix E-3.7: Developing Vegetarian and Mediterranean-style Food Patterns. 2015; 1–9
  3. Svetkey LP, Simons-Morton D, Vollmer WM, et al. Effects of dietary patterns on blood pressure. Arch Intern Med.1999; 159:285–293

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Fiber and Healthy Dietary Patterns in Weight Regulation. In: Dietary Fiber in Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-50557-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50557-2_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-50555-8

  • Online ISBN: 978-3-319-50557-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics