Driver Drowsiness Detection

  • Mahdi Rezaei
  • Reinhard Klette
Part of the Computational Imaging and Vision book series (CIVI, volume 45)


In this chapter we propose a method to assess driver drowsiness based on face and eye-status analysis. The chapter starts with a detailed discussion on effective ways to create a strong classifier (the “training phase”), and it continues with a novel optimization method for the “application phase” of the classifier. Both together significantly improve the performance of our Haar-like based detectors in terms of speed, detection rate, and detection accuracy under non-ideal lighting conditions and for noisy images. The proposed framework includes a preprocessing denoising method, introduction of Global Haar-like features, a fast adaptation method to cope with rapid lighting variations, as well as an implementation of a Kalman filter tracker to reduce the search region and to indirectly support our eye-state monitoring system. Experimental results obtained for the MIT-CMU dataset, Yale dataset, and our recorded videos and comparisons with standard Haar-like detectors show noticeable improvements compared to previous methods.


Global Feature Face Detection Search Region Weak Classifier Haar Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 6.
  2. 23.
    T. Brandt, R. Stemmer, A. Rakotonirainy, Affordable visual driver monitoring system for fatigue and monotony. Syst. Man Cybern. 7, 6451–6456 (2004)Google Scholar
  3. 33.
    CMU Face Dataset (Carnegie Mellon University, 2013),
  4. 43.
    M. Danilum, M. Rezaei, R. Nicolescu, R. Klette, Eye status based on eyelid detection: a driver assistance system, in Proceedings of the IEEE International Conference on Computer Vision and Graphics (2014), pp. 171–178Google Scholar
  5. 48.
    I. Dimov, Curve fitting, interpolation, and extrapolation. Bulgarian Academy of Sciences, Institute of Information and Communication Technologies (2014)Google Scholar
  6. 59.
    The Face of Tomorrow Database (2014),
  7. 64.
  8. 101.
    O. Jesorsky, K.J. Kirchberg, R.W. Frischholz, Robust face detection using the Hausdorff distance, in Proceedings of the International Conference on Audio-and Video-Based Biometric Person Authentication (Springer, Berlin/Heidelberg, 2001), pp. 90–95CrossRefGoogle Scholar
  9. 104.
    W. Jianxin, S.C. Brubaker, M.D. Mullin, J.M. Rehg, Fast asymmetric learning for cascade face detection. IEEE Trans. Pattern Anal. Mach. Intell. 30, 369–382 (2008)CrossRefGoogle Scholar
  10. 110.
    R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  11. 125.
    P. Kovesi, Phase preserving denoising of images, in Proceedings of DICTA (1999), pp. 212–217Google Scholar
  12. 127.
    O. Langner, R. Dotsch, G. Bijlstra, D.H.J. Wigboldus, S.T. Hawk, A. van Knippenberg, Presentation and validation of the Radboud faces database. Cogn. Emot. 24, 1377–1388 (2010)CrossRefGoogle Scholar
  13. 128.
    S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in Proceedings of the IEEE Computer Vision Pattern Recognition (2006), pp. 2169–2178Google Scholar
  14. 130.
    K. Lee, J. Ho, D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27, 684–698 (2005)CrossRefGoogle Scholar
  15. 132.
    S.Z. Li, A.K. Jain, Handbook of Face Recognition (Springer, New York, 2011)CrossRefMATHGoogle Scholar
  16. 133.
    S.Z. Li, Z. Zhang, Floatboost learning and statistical face detection. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1112–1123 (2004)CrossRefGoogle Scholar
  17. 134.
    R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical analysis of detection cascades of boosted classifiers for rapid object detection, in Proceedings of Joint Pattern Recognition Symposium (2003), pp. 297–304Google Scholar
  18. 135.
    R. Lienhart, J. Maydt, An extended set of Haar-like features for rapid object detection, in Proceedings of International Conference on Image Processing, vol. 1 (2002)Google Scholar
  19. 139.
    C. Liu, H.Y. Shum, Kullback–Leibler boosting, in Proceedings of IEEE Computer Vision Pattern Recognition (2003), pp. 587–594Google Scholar
  20. 147.
    A. Majumder, L. Behera, V.K. Subramanian, Automatic and robust detection of facial features in frontal face images, in Proceedings of International Conference on Computer Modelling and Simulation (2011), pp. 331–336Google Scholar
  21. 151.
    M. Marron, J.C. Garcia, M.A. Sotelo, M. Cabello, D. Pizarro, F. Huerta, J. Cerro, Comparing a Kalman filter and a particle filter in a multiple objects tracking application, in Proceedings of IEEE International Symposium on Intelligent Signal Processing (2007), pp. 1–6Google Scholar
  22. 154.
    H. Masnadi-Shirazi, N. Vasconcelos, Cost-sensitive boosting. IEEE Trans. Pattern Anal. Mach. Intell. 33, 294–309 (2011)CrossRefGoogle Scholar
  23. 194.
    M.T. Pham, T.J. Cham, Fast training and selection of Haar features using statistics in boosting-based face detection, in Proceedings of IEEE International Conference on Computer Vision (2007), pp. 1–7Google Scholar
  24. 195.
    M.T. Pham, Y. Gao, V.T.D. Houng, T.J. Cham, Fast polygonal integration and its application in extending Haar-like features to improve object detection, in Proceedings of IEEE Computer Vision Pattern Recognition (2010), pp. 942–949Google Scholar
  25. 196.
    P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)CrossRefGoogle Scholar
  26. 197.
    PICS Image Database, Psychology Department, University of Stirling (2011), Google Scholar
  27. 205.
    H. Rein-Lien, M. Abdel-Mottaleb, A.K. Jain, Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 24, 696–706 (2002)CrossRefGoogle Scholar
  28. 210.
    M. Rezaei, R. Klette, Novel adaptive eye detection and tracking for challenging lighting condition, in Proceedings of Asian Conference on Computer Vision Workshops. LNCS 7729 (2013), pp. 427–440Google Scholar
  29. 217.
    B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications (Artech House, London, 2004)MATHGoogle Scholar
  30. 225.
    M.J. Saberian, N. Vasconcelos, Boosting classifier cascades, in Proceedings of the Neural Information Processing Systems (2010)Google Scholar
  31. 226.
    M.J. Saberian, N. Vasconcelos, Learning optimal embedded cascades. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2005–2018 (2012)CrossRefGoogle Scholar
  32. 245.
    V. Struc, B. Vesnicer, F. Mihelic, N. Pavesic, Removing illumination artifacts from face images using the nuisance attribute projection, in Proceedings of the IEEE Conference on Acoustics Speech Signal Processing (2011), pp. 846–849Google Scholar
  33. 262.
    W. Tsao, A.J.T. Lee, Y. Liu, T. Chang, H. Lin, A data mining approach to face detection. Pattern Recognit. 43, 1039–1049 (2010)CrossRefMATHGoogle Scholar
  34. 269.
    P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in Proceedings of the IEEE Computer Vision Pattern Recognition, vol. 1 (2001), pp. 511–518Google Scholar
  35. 271.
    P. Viola, M. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)CrossRefGoogle Scholar
  36. 290.
    J. Wiśniewska, M. Rezaei, R. Klette, Robust eye gaze estimation, in Proceedings of the IEEE International Conference on Computer Vision Graphics (2014), pp. 636–644Google Scholar
  37. 292.
    World recognized Haar classifier contributors for face and eye detection (2014),
  38. 297.
    R. Xiao, L. Zhu, H.J. Zhang, Boosting chain learning for object detection, in Proceedings of the IEEE Conference on Computer Vision (2003), pp. 709–715Google Scholar
  39. 298.
    H. Xinwen, L. Cheng-Lin, T. Tieniu, Learning boosted asymmetric classifiers for object detection, in Proceedings of the IEEE Computer Vision Pattern Recognition (2006), pp. 330–338Google Scholar
  40. 300.
    YALE Face Database (2013), Scholar
  41. 301.
    M.H. Yang, D. Kriegman, N. Ahuja, Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24, 34–58 (2002)CrossRefGoogle Scholar
  42. 302.
    W. Yan-Wen, A. Xue-Yi, Face detection in color images using AdaBoost algorithm based on skin color information, in Proceedings of the International Workshop Knowledge Discovery Data Mining (2008), pp. 339–342Google Scholar
  43. 310.
    C. Zhang, Z. Zhang, A survey of recent advances in face detection. Microsoft Research. Technical Report MSR-TR-2010-66 (2010)Google Scholar
  44. 311.
    C. Zhang, Z. Zhang, Face Detection and Adatation. Synthesis Lectures Computer Vision, vol. 2 (Morgan and Claypool Publishers, San Rafael, 2010)Google Scholar
  45. 312.
    X. Zhang, Y. Gao, Face recognition across pose: a review. Pattern Recognit. 42, 2876–2896 (2009)CrossRefGoogle Scholar
  46. 316.
    Z. Zhu, Q. Ji, Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput. Vis. Image Underst. 98, 124–154 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mahdi Rezaei
    • 1
  • Reinhard Klette
    • 2
  1. 1.Department of Computer EngineeringQazvin Islamic Azad UniversityQazvinIran
  2. 2.Department of Electrical and Electronic EngineeringAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations