Skip to main content

Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases

  • Chapter
  • First Online:
Molecular Pathogenesis and Signal Transduction by Helicobacter pylori

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 400))

Abstract

The innate immune response is a critical hallmark of Helicobacter pylori infection. Epithelial and myeloid cells produce effectors, including the chemokine CXCL8, reactive oxygen species (ROS), and nitric oxide (NO), in response to bacterial components. Mechanistic and epidemiologic studies have emphasized that dysregulated and persistent release of these products leads to the development of chronic inflammation and to the molecular and cellular events related to carcinogenesis. Moreover, investigations in H. pylori-infected patients about polymorphisms of the genes encoding CXCL8 and inducible NO synthase, and epigenetic control of the ROS-producing enzyme spermine oxidase, have further proven that overproduction of these molecules impacts the severity of gastric diseases. Lastly, the critical effect of the crosstalk between the human host and the infecting bacterium in determining the severity of H. pylori-related diseases has been supported by phylogenetic analysis of the human population and their H. pylori isolates in geographic areas with varying clinical and pathologic outcomes of the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen LA, Beecher BR, Lynch JT, Rohner OV, Wittine LM (2005) Helicobacter pylori disrupts NADPH oxidase targeting in human neutrophils to induce extracellular superoxide release. J Immunol 174(6):3658–3667. doi:10.4049/jimmunol.174.6.3658

    Article  CAS  PubMed  Google Scholar 

  • Allison CC, Kufer TA, Kremmer E, Kaparakis M, Ferrero RL (2009) Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J Immunol 183(12):8099–8109. doi:10.4049/jimmunol.0900664

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Kusugami K, Ohsuga M, Shinoda M, Sakakibara M, Saito H, Fukatsu A, Ichiyama S, Ohta M (1996) Interleukin-8 activity correlates with histological severity in Helicobacter pylori-associated antral gastritis. Am J Gastroenterol 91(6):1150–1156

    CAS  PubMed  Google Scholar 

  • Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M, Sugiyama T, Ushijima T (2009) DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124(10):2367–2374. doi:10.1002/ijc.24219

    Article  CAS  PubMed  Google Scholar 

  • Antos D, Enders G, Rieder G, Stolte M, Bayerdorffer E, Hatz RA (2001) Inducible nitric oxide synthase expression before and after eradication of Helicobacter pylori in different forms of gastritis. FEMS Immunol Med Microbiol 30(2):127–131. doi:10.1111/j.1574-695X.2001.tb01560.x

    Article  CAS  PubMed  Google Scholar 

  • Asfaha S, Dubeykovskiy AN, Tomita H, Yang X, Stokes S, Shibata W, Friedman RA, Ariyama H, Dubeykovskaya ZA, Muthupalani S, Ericksen R, Frucht H, Fox JG, Wang TC (2013) Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology 144(1):155–166. doi:10.1053/j.gastro.2012.09.057

    Article  CAS  PubMed  Google Scholar 

  • Atherton JC, Peek RM Jr, Tham KT, Cover TL, Blaser MJ (1997) Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112(1):92–99. doi:10.1016/S0016-5085(97)70223-3

    Article  CAS  PubMed  Google Scholar 

  • Belogolova E, Bauer B, Pompaiah M, Asakura H, Brinkman V, Ertl C, Bartfeld S, Nechitaylo TY, Haas R, Machuy N, Salama N, Churin Y, Meyer TF (2013) Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell Microbiol 15(11):1896–1912. doi:10.1111/cmi.12158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betten A, Bylund J, Christophe T, Boulay F, Romero A, Hellstrand K, Dahlgren C (2001) A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J Clin Invest 108(8):1221–1228. doi:10.1172/JCI13430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya A, Pathak S, Datta S, Chattopadhyay S, Basu J, Kundu M (2002) Mitogen-activated protein kinases and nuclear factor-kappaB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages. Biochem J 368(Pt 1):121–129. doi:10.1042/BJ20020555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchard TG, Yu F, Hsieh CL, Redline RW (2003) Severe inflammation and reduced bacteria load in murine helicobacter infection caused by lack of phagocyte oxidase activity. J Infect Dis 187(10):1609–1615. doi:10.1086/374780

    Article  CAS  PubMed  Google Scholar 

  • Brandt S, Kwok T, Hartig R, Konig W, Backert S (2005) NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A 102(26):9300–9305. doi:10.1073/pnas.0409873102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun E, Lim JW, Kim JM, Kim H (2014) Alpha-lipoic acid inhibits Helicobacter pylori-induced oncogene expression and hyperproliferation by suppressing the activation of NADPH oxidase in gastric epithelial cells. Mediat Inflamm 2014:380830. doi:10.1155/2014/380830

    Google Scholar 

  • Canedo P, Castanheira-Vale AJ, Lunet N, Pereira F, Figueiredo C, Gioia-Patricola L, Canzian F, Moreira H, Suriano G, Barros H, Carneiro F, Seruca R, Machado JC (2008) The interleukin-8-251*T/*A polymorphism is not associated with risk for gastric carcinoma development in a Portuguese population. Eur J Cancer Prev 17(1):28–32. doi:10.1097/CEJ.0b013e32809b4d0f

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Cheng Y, Asim M, Bussiere FI, Xu H, Gobert AP, Hacker A, Casero RA Jr, Wilson KT (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 279(38):40161–40173. doi:10.1074/jbc.M401370200

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Asim M, Hoge S, Lewis ND, Singh K, Barry DP, de Sablet T, Piazuelo MB, Sarvaria AR, Cheng Y, Closs EI, Casero RA Jr, Gobert AP, Wilson KT (2010) Polyamines impair immunity to Helicobacter pylori by inhibiting L-Arginine uptake required for nitric oxide production. Gastroenterology 139(5):1686–1698. doi:10.1053/j.gastro.2010.06.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T, Delgado AG, Wroblewski LE, Piazuelo MB, Yan F, Israel DA, Casero Jr RA, Correa P, Gobert AP, Polk DB, Peek Jr RM, Wilson KT (2011) Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 141(5):1696–1708, e1691–1692. doi:10.1053/j.gastro.2011.07.045

  • Chaturvedi R, Asim M, Piazuelo MB, Yan F, Barry DP, Sierra JC, Delgado AG, Hill S, Casero Jr RA, Bravo LE, Dominguez RL, Correa P, Polk DB, Washington MK, Rose KL, Schey KL, Morgan DR, Peek Jr RM, Wilson KT (2014) Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 146(7):1739–1751, e1714. doi:10.1053/j.gastro.2014.02.005

  • Chaturvedi R, de Sablet T, Asim M, Piazuelo MB, Barry DP, Verriere TG, Sierra JC, Hardbower DM, Delgado AG, Schneider BG, Israel DA, Romero-Gallo J, Nagy TA, Morgan DR, Murray-Stewart T, Bravo LE, Peek RM Jr, Fox JG, Woster PM, Casero RA Jr, Correa P, Wilson KT (2015) Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 34(26):3429–3440. doi:10.1038/onc.2014.273

    Article  CAS  PubMed  Google Scholar 

  • Chu SH, Kim H, Seo JY, Lim JW, Mukaida N, Kim KH (2003) Role of NF-kappaB and AP-1 on Helicobater pylori-induced IL-8 expression in AGS cells. Dig Dis Sci 48(2):257–265. doi:10.1023/A:1021963007225

    Article  PubMed  Google Scholar 

  • Correa P (1988) A human model of gastric carcinogenesis. Cancer Res 48(13):3554–3560

    CAS  PubMed  Google Scholar 

  • Correa P, Cuello C, Duque E, Burbano LC, Garcia FT, Bolanos O, Brown C, Haenszel W (1976) Gastric cancer in Colombia. III. Natural history of precursor lesions. J Natl Cancer Inst 57(5):1027–1035. doi:10.1093/jnci/57.5.1027

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JE, Farmery SM, Lindley IJ, Figura N, Peichl P, Tompkins DS (1994) CagA/cytotoxic strains of Helicobacter pylori and interleukin-8 in gastric epithelial cell lines. J Clin Pathol 47(10):945–950. doi:10.1136/jcp.47.10.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira JG, Rossi AF, Nizato DM, Cadamuro AC, Jorge YC, Valsechi MC, Venancio LP, Rahal P, Pavarino EC, Goloni-Bertollo EM, Silva AE (2015) Influence of functional polymorphisms in TNF-alpha, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumour Biol 36(12):9159–9170. doi:10.1007/s13277-015-3593-x

    Article  PubMed  CAS  Google Scholar 

  • de Sablet T, Piazuelo MB, Shaffer CL, Schneider BG, Asim M, Chaturvedi R, Bravo LE, Sicinschi LA, Delgado AG, Mera RM, Israel DA, Romero-Gallo J, Peek RM Jr, Cover TL, Correa P, Wilson KT (2011) Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut 60(9):1189–1195. doi:10.1136/gut.2010.234468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • den Hartog G, Chattopadhyay R, Ablack A, Hall EH, Butcher LD, Bhattacharyya A, Eckmann L, Harris PR, Das S, Ernst PB, Crowe SE (2016) Regulation of Rac1 and reactive oxygen species production in response to infection of gastrointestinal epithelia. PLoS Pathog 12(1):e1005382. doi:10.1371/journal.ppat.1005382

    Article  CAS  Google Scholar 

  • Devi SM, Ahmed I, Khan AA, Rahman SA, Alvi A, Sechi LA, Ahmed N (2006) Genomes of Helicobacter pylori from native Peruvians suggest admixture of ancestral and modern lineages and reveal a western type cag-pathogenicity island. BMC Genom 7:191. doi:10.1186/1471-2164-7-191

    Article  CAS  Google Scholar 

  • Eck M, Schmausser B, Scheller K, Toksoy A, Kraus M, Menzel T, Muller-Hermelink HK, Gillitzer R (2000) CXC chemokines Gro(alpha)/IL-8 and IP-10/MIG in Helicobacter pylori gastritis. Clin Exp Immunol 122(2):192–199. doi:10.1046/j.1365-2249.2000.01374.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elfvin A, Bolin I, Lonroth H, Fandriks L (2006) Gastric expression of inducible nitric oxide synthase and myeloperoxidase in relation to nitrotyrosine in Helicobacter pylori-infected Mongolian gerbils. Scand J Gastroenterol 41(9):1013–1018. doi:10.1080/00365520600633537

    Article  CAS  PubMed  Google Scholar 

  • Elfvin A, Edebo A, Bolin I, Fandriks L (2007) Quantitative measurement of nitric oxide and hydrogen peroxide in Helicobacter pylori-infected Mongolian gerbils in vivo. Scand J Gastroenterol 42(10):1175–1181. doi:10.1080/00365520701288306

    Article  CAS  PubMed  Google Scholar 

  • Evans DJ Jr, Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR (1995) Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63(6):2213–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felley CP, Pignatelli B, Van Melle GD, Crabtree JE, Stolte M, Diezi J, Corthesy-Theulaz I, Michetti P, Bancel B, Patricot LM, Ohshima H, Felley-Bosco E (2002) Oxidative stress in gastric mucosa of asymptomatic humans infected with Helicobacter pylori: effect of bacterial eradication. Helicobacter 7(6):342–348. doi:10.1046/j.1523-5378.2002.00107.x

    Article  CAS  PubMed  Google Scholar 

  • Fischer W, Puls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42(5):1337–1348. doi:10.1046/j.1365-2958.2001.02677.x

    Article  CAS  PubMed  Google Scholar 

  • Fox JG, Rogers AB, Ihrig M, Taylor NS, Whary MT, Dockray G, Varro A, Wang TC (2003) Helicobacter pylori-associated gastric cancer in INS-GAS mice is gender specific. Cancer Res 63(5):942–950

    CAS  PubMed  Google Scholar 

  • Fu S, Ramanujam KS, Wong A, Fantry GT, Drachenberg CB, James SP, Meltzer SJ, Wilson KT (1999) Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 116(6):1319–1329. doi:10.1016/S0016-5085(99)70496-8

    Article  CAS  PubMed  Google Scholar 

  • Gobert AP, Cheng Y, Wang JY, Boucher JL, Iyer RK, Cederbaum SD, Casero RA Jr, Newton JC, Wilson KT (2002) Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol 168(9):4692–4700. doi:10.4049/jimmunol.168.9.4692

    Article  CAS  PubMed  Google Scholar 

  • Gobert AP, Verriere T, de Sablet T, Peek RM Jr, Chaturvedi R, Wilson KT (2013) Haem oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells. Cell Microbiol 15(1):145–156. doi:10.1111/cmi.12039

    Article  CAS  PubMed  Google Scholar 

  • Gobert AP, Verriere T, Asim M, Barry DP, Piazuelo MB, de Sablet T, Delgado AG, Bravo LE, Correa P, Peek RM Jr, Chaturvedi R, Wilson KT (2014) Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. J Immunol 193(6):3013–3022. doi:10.4049/jimmunol.1401075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto T, Haruma K, Kitadai Y, Ito M, Yoshihara M, Sumii K, Hayakawa N, Kajiyama G (1999) Enhanced expression of inducible nitric oxide synthase and nitrotyrosine in gastric mucosa of gastric cancer patients. Clin Cancer Res 5(6):1411–1415

    CAS  PubMed  Google Scholar 

  • Hahm KB, Lee KJ, Choi SY, Kim JH, Cho SW, Yim H, Park SJ, Chung MH (1997) Possibility of chemoprevention by the eradication of Helicobacter pylori: oxidative DNA damage and apoptosis in H. pylori infection. Am J Gastroenterol 92(10):1853–1857

    CAS  PubMed  Google Scholar 

  • Hardbower DM, Asim M, Murray-Stewart T, Casero RA Jr, Verriere T, Lewis ND, Chaturvedi R, Piazuelo MB, Wilson KT (2016a) Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids. doi:10.1007/s00726-016-2231-2

    PubMed  Google Scholar 

  • Hardbower DM, Singh K, Asim M, Verriere TG, Olivares-Villagómez D, Barry DP, Allaman MM, Washington MK, Peek Jr RM, Piazuelo MB, Wilson KT (2016b) EGFR regulates macrophage polarization and function in bacterial infection. J Clin Invest (in press). doi:10.1172/JCI83585

  • Harris PR, Mobley HL, Perez-Perez GI, Blaser MJ, Smith PD (1996) Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology 111(2):419–425. doi:10.1053/gast.1996.v111.pm8690207

    Article  CAS  PubMed  Google Scholar 

  • Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295(5555):683–686. doi:10.1126/science.1067147

    Article  CAS  PubMed  Google Scholar 

  • Hirahashi M, Koga Y, Kumagai R, Aishima S, Taguchi K, Oda Y (2014) Induced nitric oxide synthetase and peroxiredoxin expression in intramucosal poorly differentiated gastric cancer of young patients. Pathol Int 64(4):155–163. doi:10.1111/pin.12152

    Article  CAS  PubMed  Google Scholar 

  • Hisatsune J, Nakayama M, Isomoto H, Kurazono H, Mukaida N, Mukhopadhyay AK, Azuma T, Yamaoka Y, Sap J, Yamasaki E, Yahiro K, Moss J, Hirayama T (2008) Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol 180(7):5017–5027. doi:10.4049/jimmunol.180.7.5017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge YC, Duarte MC, Silva AE (2010) Gastric cancer is associated with NOS2-954G/C polymorphism and environmental factors in a Brazilian population. BMC Gastroenterol 10:64. doi:10.1186/1471-230X-10-64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaise M, Miwa J, Suzuki N, Mishiro S, Ohta Y, Yamasaki T, Tajiri H (2007) Inducible nitric oxide synthase gene promoter polymorphism is associated with increased gastric mRNA expression of inducible nitric oxide synthase and increased risk of gastric carcinoma. Eur J Gastroenterol Hepatol 19(2):139–145. doi:10.1097/01.meg.0000252637.11291.1d

    Article  CAS  PubMed  Google Scholar 

  • Kang JM, Kim N, Lee DH, Park JH, Lee MK, Kim JS, Jung HC, Song IS (2009) The effects of genetic polymorphisms of IL-6, IL-8, and IL-10 on Helicobacter pylori-induced gastroduodenal diseases in Korea. J Clin Gastroenterol 43(5):420–428. doi:10.1097/MCG.0b013e318178d1d3

    Article  CAS  PubMed  Google Scholar 

  • Katsurahara M, Kobayashi Y, Iwasa M, Ma N, Inoue H, Fujita N, Tanaka K, Horiki N, Gabazza EC, Takei Y (2009) Reactive nitrogen species mediate DNA damage in Helicobacter pylori-infected gastric mucosa. Helicobacter 14(6):552–558. doi:10.1111/j.1523-5378.2009.00719.x

    Article  CAS  PubMed  Google Scholar 

  • Keates S, Keates AC, Warny M, Peek RM Jr, Murray PG, Kelly CP (1999) Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag− Helicobacter pylori. J Immunol 163(10):5552–5559 ji_v163n10p5552

    CAS  PubMed  Google Scholar 

  • Keenan JI, Peterson RA 2nd, Hampton MB (2005) NADPH oxidase involvement in the pathology of Helicobacter pylori infection. Free Radic Biol Med 38(9):1188–1196. doi:10.1016/j.freeradbiomed.2004.12.025

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Lee YC, Kim HK, Blaser MJ (2006) Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. Cell Microbiol 8(1):97–106. doi:10.1111/j.1462-5822.2005.00603.x

    Article  CAS  PubMed  Google Scholar 

  • Kitadai Y, Takahashi Y, Haruma K, Naka K, Sumii K, Yokozaki H, Yasui W, Mukaida N, Ohmoto Y, Kajiyama G, Fidler IJ, Tahara E (1999) Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br J Cancer 81(4):647–653. doi:10.1038/sj.bjc.6690742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodaman N, Pazos A, Schneider BG, Piazuelo MB, Mera R, Sobota RS, Sicinschi LA, Shaffer CL, Romero-Gallo J, de Sablet T, Harder RH, Bravo LE, Peek RM Jr, Wilson KT, Cover TL, Williams SM, Correa P (2014) Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc Natl Acad Sci U S A 111(4):1455–1460. doi:10.1073/pnas.1318093111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konturek SJ, Starzynska T, Konturek PC, Karczewska E, Marlicz K, Lawniczak M, Jaroszewicz-Heigelman H, Bielanski W, Hartwich A, Ziemniak A, Hahn EG (2002) Helicobacter pylori and CagA status, serum gastrin, interleukin-8 and gastric acid secretion in gastric cancer. Scand J Gastroenterol 37(8):891–898. doi:10.1080/003655202760230838

    Article  CAS  PubMed  Google Scholar 

  • Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M, Peek RM, Blanke SR, Chen LF (2009) Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep 10(11):1242–1249. doi:10.1038/embor.2009.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster JR Jr, Hibbs JB Jr (1990) EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci U S A 87(3):1223–1227. doi:10.1073/pnas.87.3.1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Bae SH, Lee JL, Hyun MS, Kim SH, Song SK, Kim HS (2004) Relationship between urokinase-type plasminogen receptor, interleukin-8 gene expression and clinicopathological features in gastric cancer. Oncology 66(3):210–217. doi:10.1159/000077997

    Article  CAS  PubMed  Google Scholar 

  • Lee WP, Tai DI, Lan KH, Li AF, Hsu HC, Lin EJ, Lin YP, Sheu ML, Li CP, Chang FY, Chao Y, Yen SH, Lee SD (2005) The –251T allele of the interleukin-8 promoter is associated with increased risk of gastric carcinoma featuring diffuse-type histopathology in Chinese population. Clin Cancer Res 11(18):6431–6441. doi:10.1158/1078-0432.CCR-05-0942

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Rickman B, Rogers AB, Ge Z, Wang TC, Fox JG (2008) Helicobacter pylori eradication prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res 68(9):3540–3548. doi:10.1158/0008-5472.CAN-07-6786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis ND, Asim M, Barry DP, de Sablet T, Singh K, Piazuelo MB, Gobert AP, Chaturvedi R, Wilson KT (2011) Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. J Immunol 186(6):3632–3641. doi:10.4049/jimmunol.1003431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CQ, Pignatelli B, Ohshima H (2001) Increased oxidative and nitrative stress in human stomach associated with cagA+ Helicobacter pylori infection and inflammation. Dig Dis Sci 46(4):836–844. doi:10.1023/A:1010764720524

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu S, Luo J, Liu A, Tang S, Liu S, Yu M, Zhang Y (2015) Helicobacter pylori induces IL-1beta and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway. Pathog Dis 73(4). doi:10.1093/femspd/ftu024

  • Lu H, Wu JY, Kudo T, Ohno T, Graham DY, Yamaoka Y (2005a) Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with Helicobacter pylori. Mol Biol Cell 16(10):4954–4966. doi:10.1091/mbc.E05-05-0426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Pan K, Zhang L, Lin D, Miao X, You W (2005b) Genetic polymorphisms of interleukin (IL)-1B, IL-1RN, IL-8, IL-10 and tumor necrosis factor alpha and risk of gastric cancer in a Chinese population. Carcinogenesis 26(3):631–636. doi:10.1093/carcin/bgh349

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Adachi Y, Hiraku Y, Horiki N, Horiike S, Imoto I, Pinlaor S, Murata M, Semba R, Kawanishi S (2004) Accumulation of 8-nitroguanine in human gastric epithelium induced by Helicobacter pylori infection. Biochem Biophys Res Commun 319(2):506–510. doi:10.1016/j.bbrc.2004.04.193

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Akanuma M, Mitsuno Y, Hirata Y, Ogura K, Yoshida H, Shiratori Y, Omata M (2001) Distinct mechanism of Helicobacter pylori-mediated NF-kappa B activation between gastric cancer cells and monocytic cells. J Biol Chem 276(48):44856–44864. doi:10.1074/jbc.M105381200

    Article  CAS  PubMed  Google Scholar 

  • Mai UE, Perez-Perez GI, Wahl LM, Wahl SM, Blaser MJ, Smith PD (1991) Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism. J Clin Invest 87(3):894–900. doi:10.1172/JCI115095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannick EE, Bravo LE, Zarama G, Realpe JL, Zhang XJ, Ruiz B, Fontham ET, Mera R, Miller MJ, Correa P (1996) Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants. Cancer Res 56(14):3238–3243

    CAS  PubMed  Google Scholar 

  • Matsubara S, Shibata H, Takahashi M, Ishikawa F, Yokokura T, Sugimura T, Wakabayashi K (2004) Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection. Cancer Sci 95(10):798–802

    Article  CAS  PubMed  Google Scholar 

  • Menheniott TR, Peterson AJ, O’Connor L, Lee KS, Kalantzis A, Kondova I, Bontrop RE, Bell KM, Giraud AS (2010) A novel gastrokine, Gkn3, marks gastric atrophy and shows evidence of adaptive gene loss in humans. Gastroenterology 138(5):1823–1835. doi:10.1053/j.gastro.2010.01.050

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa M, Suzuki H, Masaoka T, Kai A, Suematsu M, Nagata H, Miura S, Ishii H (2003) Suppressed apoptosis in the inflamed gastric mucosa of Helicobacter pylori-colonized iNOS-knockout mice. Free Radic Biol Med 34(12):1621–1630. doi:10.1016/S0891-5849(03)00218-1

    Article  CAS  PubMed  Google Scholar 

  • Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, Wessler S, Torres J, Smolka A, Backert S (2012) c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest 122(4):1553–1566. doi:10.1172/JCI61143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray-Stewart T, Sierra JC, Piazuelo MB, Mera RM, Chaturvedi R, Bravo LE, Correa P, Schneider BG, Wilson KT, Casero RA (2016) Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer. Oncogene. doi:10.1038/onc.2016.91

    PubMed  PubMed Central  Google Scholar 

  • Ngo HK, Lee HG, Piao JY, Zhong X, Lee HN, Han HJ, Kim W, Kim DH, Cha YN, Na HK, Surh YJ (2016) Helicobacter pylori induces Snail expression through ROS-mediated activation of Erk and inactivation of GSK-3beta in human gastric cancer cells. Mol Carcinog. doi:10.1002/mc.22464

    PubMed  Google Scholar 

  • Nielsen H, Andersen LP (1992) Activation of human phagocyte oxidative metabolism by Helicobacter pylori. Gastroenterology 103(6):1747–1753

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Birkholz S, Andersen LP, Moran AP (1994) Neutrophil activation by Helicobacter pylori lipopolysaccharides. J Infect Dis 170(1):135–139. doi:10.1093/infdis/170.1.135

    Article  CAS  PubMed  Google Scholar 

  • Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Correa P, Cover TL, Amieva MR, Peek RM Jr (2013) Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest 123(1):479–492. doi:10.1172/JCI64373

    Article  CAS  PubMed  Google Scholar 

  • Obonyo M, Guiney DG, Fierer J, Cole SP (2003) Interactions between inducible nitric oxide and other inflammatory mediators during Helicobacter pylori infection. Helicobacter 8(5):495–502. doi:10.1046/j.1523-5378.2003.00171.x

    Article  CAS  PubMed  Google Scholar 

  • Ohyauchi M, Imatani A, Yonechi M, Asano N, Miura A, Iijima K, Koike T, Sekine H, Ohara S, Shimosegawa T (2005) The polymorphism interleukin 8 −251 A/T influences the susceptibility of Helicobacter pylori related gastric diseases in the Japanese population. Gut 54(3):330–335. doi:10.1136/gut.2003.033050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olczak AA, Olson JW, Maier RJ (2002) Oxidative-stress resistance mutants of Helicobacter pylori. J Bacteriol 184(12):3186–3193. doi:10.1128/JB.184.12.3186-3193.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa A, Danese S, Sgambato A, Ardito R, Zannoni G, Rinelli A, Vecchio FM, Gentiloni-Silveri N, Cittadini A, Gasbarrini G, Gasbarrini A (2002) Role of Helicobacter pylori CagA+ infection in determining oxidative DNA damage in gastric mucosa. Scand J Gastroenterol 37(4):409–413. doi:10.1080/003655202317316033

    Article  CAS  PubMed  Google Scholar 

  • Piao JY, Lee HG, Kim SJ, Kim DH, Han HJ, Ngo HK, Park SA, Woo JH, Lee JS, Na HK, Cha YN, Surh YJ (2016) Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: potential roles for reactive oxygen species. Helicobacter. doi:10.1111/hel.12298

    PubMed  Google Scholar 

  • Pignatelli B, Bancel B, Plummer M, Toyokuni S, Patricot LM, Ohshima H (2001) Helicobacter pylori eradication attenuates oxidative stress in human gastric mucosa. Am J Gastroenterol 96(6):1758–1766. doi:10.1111/j.1572-0241.2001.03869.x

    Article  CAS  PubMed  Google Scholar 

  • Raju D, Hussey S, Ang M, Terebiznik MR, Sibony M, Galindo-Mata E, Gupta V, Blanke SR, Delgado A, Romero-Gallo J, Ramjeet MS, Mascarenhas H, Peek RM, Correa P, Streutker C, Hold G, Kunstmann E, Yoshimori T, Silverberg MS, Girardin SE, Philpott DJ, El Omar E, Jones NL (2012) Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142(5):1160–1171. doi:10.1053/j.gastro.2012.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Alvi A, Ahmed N (2008) Novel protein antigen (JHP940) from the genomic plasticity region of Helicobacter pylori induces tumor necrosis factor alpha and interleukin-8 secretion by human macrophages. J Bacteriol 190(3):1146–1151. doi:10.1128/JB.01309-07

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi AA, Miura S, Takeuchi T, Hokari R, Mizumori M, Yoshida H, Higuchi H, Mori M, Kimura H, Suzuki H, Ishii H (1999) Increased expression of inducible nitric oxide synthase and peroxynitrite in Helicobacter pylori gastric ulcer. Free Radic Biol Med 27(7–8):781–789. doi:10.1016/S0891-5849(99)00124-0

    Article  CAS  PubMed  Google Scholar 

  • Salih BA, Guner A, Karademir A, Uslu M, Ovali MA, Yazici D, Bolek BK, Arikan S (2014) Evaluation of the effect of cagPAI genes of Helicobacter pylori on AGS epithelial cell morphology and IL-8 secretion. Antonie Van Leeuwenhoek 105(1):179–189. doi:10.1007/s10482-013-0064-5

    Article  CAS  PubMed  Google Scholar 

  • Salles N, Szanto I, Herrmann F, Armenian B, Stumm M, Stauffer E, Michel JP, Krause KH (2005) Expression of mRNA for ROS-generating NADPH oxidases in the aging stomach. Exp Gerontol 40(4):353–357. doi:10.1016/j.exger.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  • Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C, Tonello F, Kelleher D, Rappuoli R, Montecucco C, Rossi F (2000) The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J Exp Med 191(9):1467–1476. doi:10.1084/jem.191.9.1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa T, Mounawar M, Tatemichi M, Gilibert I, Katoh T, Ohshima H (2008) Increased risk of gastric cancer in Japanese subjects is associated with microsatellite polymorphisms in the heme oxygenase-1 and the inducible nitric oxide synthase gene promoters. Cancer Lett 269(1):78–84. doi:10.1016/j.canlet.2008.04.015

    Article  CAS  PubMed  Google Scholar 

  • Schneider BG, Mera R, Piazuelo MB, Bravo JC, Zabaleta J, Delgado AG, Bravo LE, Wilson KT, El-Rifai W, Peek RM Jr, Correa P (2015) DNA methylation predicts progression of human gastric lesions. Cancer Epidemiol Biomarkers Prev 24(10):1607–1613. doi:10.1158/1055-9965.EPI-15-0388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SA, Tummuru MK, Miller GG, Blaser MJ (1995) Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun 63(5):1681–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheh A, Chaturvedi R, Merrell DS, Correa P, Wilson KT, Fox JG (2013) Phylogeographic origin of Helicobacter pylori determines host-adaptive responses upon coculture with gastric epithelial cells. Infect Immun 81(7):2468–2477. doi:10.1128/IAI.01182-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoyama T, Fukuda S, Liu Q, Nakaji S, Fukuda Y, Sugawara K (2003) Helicobacter pylori water soluble surface proteins prime human neutrophils for enhanced production of reactive oxygen species and stimulate chemokine production. J Clin Pathol 56(5):348–351. doi:10.1136/jcp.56.5.348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirai K, Ohmiya N, Taguchi A, Mabuchi N, Yatsuya H, Itoh A, Hirooka Y, Niwa Y, Mori N, Goto H (2006) Interleukin-8 gene polymorphism associated with susceptibility to non-cardia gastric carcinoma with microsatellite instability. J Gastroenterol Hepatol 21(7):1129–1135. doi:10.1111/j.1440-1746.2006.04443.x

    Article  CAS  PubMed  Google Scholar 

  • Son HJ, Rhee JC, Park DI, Kim YH, Rhee PL, Koh KC, Paik SW, Choi KW, Kim JJ (2001) Inducible nitric oxide synthase expression in gastroduodenal diseases infected with Helicobacter pylori. Helicobacter 6(1):37–43. doi:10.1046/j.1523-5378.2001.00004.x

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Kim SG, Jung SA, Lee MK, Jung HC, Song IS (2010) The interleukin-8-251 AA genotype is associated with angiogenesis in gastric carcinogenesis in Helicobacter pylori-infected Koreans. Cytokine 51(2):158–165. doi:10.1016/j.cyto.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  • Supajatura V, Ushio H, Wada A, Yahiro K, Okumura K, Ogawa H, Hirayama T, Ra C (2002) Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J Immunol 168(6):2603–2607. doi:10.4049/jimmunol.168.6.2603

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, Nagai S, Koyasu S, Gilman RH, Kersulyte D, Berg DE, Sasakawa C (2009) Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 5(1):23–34. doi:10.1016/j.chom.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Kiga K, Kersulyte D, Cok J, Hooper CC, Mimuro H, Sanada T, Suzuki S, Oyama M, Kozuka-Hata H, Kamiya S, Zou QM, Gilman RH, Berg DE, Sasakawa C (2011) Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon. J Biol Chem 286(34):29964–29972. doi:10.1074/jbc.M111.263715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szoke D, Molnar B, Solymosi N, Klausz G, Gyulai Z, Toth B, Mandi Y, Tulassay Z (2008) T-251A polymorphism of IL-8 relating to the development of histological gastritis and G-308A polymorphism of TNF-alpha relating to the development of macroscopic erosion. Eur J Gastroenterol Hepatol 20(3):191–195. doi:10.1097/MEG.0b013e3282f1d29f

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Ohmiya N, Shirai K, Mabuchi N, Itoh A, Hirooka Y, Niwa Y, Goto H (2005) Interleukin-8 promoter polymorphism increases the risk of atrophic gastritis and gastric cancer in Japan. Cancer Epidemiol Biomarkers Prev 14(11 Pt 1):2487–2493. doi:10.1158/1055-9965.EPI-05-0326

    Article  CAS  PubMed  Google Scholar 

  • Tahara T, Shibata T, Wang F, Nakamura M, Okubo M, Yoshioka D, Sakata M, Nakano H, Hirata I, Arisawa T (2009a) Association of polymorphism of the p22PHOX component of NADPH oxidase in gastroduodenal diseases in Japan. Scand J Gastroenterol 44(3):296–300. doi:10.1080/00365520701702348

    Article  CAS  PubMed  Google Scholar 

  • Tahara T, Shibata T, Wang F, Nakamura M, Sakata M, Nakano H, Hirata I, Arisawa T (2009b) A genetic variant of the p22PHOX component of NADPH oxidase C242T is associated with reduced risk of functional dyspepsia in Helicobacter pylori-infected Japanese individuals. Eur J Gastroenterol Hepatol 21(12):1363–1368. doi:10.1097/MEG.0b013e32830e2871

    Article  PubMed  Google Scholar 

  • Tatemichi M, Ogura T, Nagata H, Esumi H (1998) Enhanced expression of inducible nitric oxide synthase in chronic gastritis with intestinal metaplasia. J Clin Gastroenterol 27(3):240–245

    Article  CAS  PubMed  Google Scholar 

  • Tatemichi M, Sawa T, Gilibert I, Tazawa H, Katoh T, Ohshima H (2005) Increased risk of intestinal type of gastric adenocarcinoma in Japanese women associated with long forms of CCTTT pentanucleotide repeat in the inducible nitric oxide synthase promoter. Cancer Lett 217(2):197–202. doi:10.1016/j.canlet.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  • Tominaga K, Kawahara T, Sano T, Toida K, Kuwano Y, Sasaki H, Kawai T, Teshima-Kondo S, Rokutan K (2007) Evidence for cancer-associated expression of NADPH oxidase 1 (Nox1)-based oxidase system in the human stomach. Free Radic Biol Med 43(12):1627–1638. doi:10.1016/j.freeradbiomed.2007.08.029

    Article  CAS  PubMed  Google Scholar 

  • Tonello F, Dundon WG, Satin B, Molinari M, Tognon G, Grandi G, Del Giudice G, Rappuoli R, Montecucco C (1999) The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol Microbiol 34(2):238–246. doi:10.1046/j.1365-2958.1999.01584.x

    Article  CAS  PubMed  Google Scholar 

  • Touati E, Michel V, Thiberge JM, Wuscher N, Huerre M, Labigne A (2003) Chronic Helicobacter pylori infections induce gastric mutations in mice. Gastroenterology 124(5):1408–1419. doi:10.1016/S0016-5085(03)00266-X

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Tsujii M, Sun WH, Gunawan ES, Murata H, Kawano S, Hori M (1997) Helicobacter pylori and gastric carcinogenesis. J Clin Gastroenterol 25(Suppl 1):S186–S197

    Article  PubMed  Google Scholar 

  • Umeda M, Murata-Kamiya N, Saito Y, Ohba Y, Takahashi M, Hatakeyama M (2009) Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem 284(33):22166–22172. doi:10.1074/jbc.M109.035766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga MG, Shaffer CL, Sierra JC, Suarez G, Piazuelo MB, Whitaker ME, Romero-Gallo J, Krishna US, Delgado A, Gomez MA, Good JA, Almqvist F, Skaar EP, Correa P, Wilson KT, Hadjifrangiskou M, Peek RM (2016) Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene. doi:10.1038/onc.2016.158

    PubMed  PubMed Central  Google Scholar 

  • Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5(11):1166–1174. doi:10.1038/ni1131

    Article  CAS  PubMed  Google Scholar 

  • Vinall LE, King M, Novelli M, Green CA, Daniels G, Hilkens J, Sarner M, Swallow DM (2002) Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology 123(1):41–49. doi:10.1053/gast.2002.34157

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Devereux W, Woster PM, Stewart TM, Hacker A, Casero RA Jr (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61(14):5370–5373

    CAS  PubMed  Google Scholar 

  • Wang G, Hong Y, Olczak A, Maier SE, Maier RJ (2006) Dual roles of Helicobacter pylori NapA in inducing and combating oxidative stress. Infect Immun 74(12):6839–6846. doi:10.1128/IAI.00991-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson KT, Crabtree JE (2007) Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 133(1):288–308. doi:10.1053/j.gastro.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Chaturvedi R, Cheng Y, Bussiere FI, Asim M, Yao MD, Potosky D, Meltzer SJ, Rhee JG, Kim SS, Moss SF, Hacker A, Wang Y, Casero RA Jr, Wilson KT (2004) Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 64(23):8521–8525. doi:10.1158/0008-5472.CAN-04-3511

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka Y, Kudo T, Lu H, Casola A, Brasier AR, Graham DY (2004) Role of interferon-stimulated responsive element-like element in interleukin-8 promoter in Helicobacter pylori infection. Gastroenterology 126(4):1030–1043. doi:10.1053/j.gastro.2003.12.048

    Article  CAS  PubMed  Google Scholar 

  • Ye BD, Kim SG, Park JH, Kim JS, Jung HC, Song IS (2009) The interleukin-8-251 A allele is associated with increased risk of noncardia gastric adenocarcinoma in Helicobacter pylori-infected Koreans. J Clin Gastroenterol 43(3):233–239. doi:10.1097/MCG.0b013e3181646701

    Article  CAS  PubMed  Google Scholar 

  • Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B, Ohshima H (1995) Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis 16(9):2045–2050. doi:10.1093/carcin/16.9.2045

    Article  CAS  PubMed  Google Scholar 

  • Yuan A, Chen JJ, Yao PL, Yang PC (2005) The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 10:853–865. doi:10.2741/1579

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Du C, Guo X, Yuan L, Niu W, Yu W, Er L, Wang S (2010) Interleukin-8-251A/T polymorphism and Helicobacter pylori infection influence risk for the development of gastric cardiac adenocarcinoma in a high-incidence area of China. Mol Biol Rep 37(8):3983–3989. doi:10.1007/s11033-010-0057-7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith T. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gobert, A.P., Wilson, K.T. (2017). Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases. In: Tegtmeyer, N., Backert, S. (eds) Molecular Pathogenesis and Signal Transduction by Helicobacter pylori. Current Topics in Microbiology and Immunology, vol 400. Springer, Cham. https://doi.org/10.1007/978-3-319-50520-6_2

Download citation

Publish with us

Policies and ethics