Skip to main content

DInSAR for the Monitoring of Cultural Heritage Sites

Differential SAR Interferometry for the Investigation of Deformations Affecting Cultural Heritage Sites: The Case Study of the Ancient Roman City of Pompeii (Italy)

  • Chapter
  • First Online:
Book cover Sensing the Past

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 16))

Abstract

Detection and monitoring of deformations affecting cultural heritage sites and their surroundings represent a key issue for developing strategies for their preservation, particularly in the case of extended archaeological areas. In this chapter, we first introduce the differential SAR interferometry (DInSAR) techniques that, thanks to their capability of performing noninvasive deformation analyses, provide valuable information about the spatial and the temporal evolution of the detected displacements. Subsequently, we present the DInSAR results achieved over the whole archaeological site of the ancient Roman city of Pompeii (Italy), and focus on some historical buildings where small displacements, involving portions or the whole complex structure, have been detected.

The performed analysis confirms the relevance of the DInSAR techniques for developing sustainable strategies aimed at the preservation of cultural and historical heritage sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arangio S, Calo’ F, Di Mauro M, Bonano M, Marsella M, Manunta M (2013) An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome, Struct Infrastruct Eng Maint, Manag Life-Cycle Des Perform:1–15

    Google Scholar 

  • Badger L, Grance T, Patt Corner R, Voas J (2012) Cloud computing synopsis and recommendations, NIST special publication 800–146. National Institute of Standards and Technology, US. Department of Commerce, Gaithersburg, MD

    Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new Algorithm for surface deformation monitoring based on small baseline differential SAR Interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383

    Article  Google Scholar 

  • Bock Y, Wdowinski S, Ferretti A, Novali F, Fumagalli A (2012) Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochem Geophys Geosyst 13:Q03023

    Google Scholar 

  • Bonano M, Manunta M, Marsella M, Lanari R (2012) Long-term ERS/ENVISAT deformation time-series generation at full spatial resolution via the extended SBAS technique. Int J Remote Sens 33:4756–4783

    Article  Google Scholar 

  • Bonano M, Manunta M, Pepe A, Paglia L, Lanari R (2013) From previous C-Band to New X-Band SAR systems: assessment of the DInSAR mapping improvement for deformation time-series retrieval in urban areas. IEEE Trans Geosci Remote Sens 51(4):1973–1984

    Article  Google Scholar 

  • Burgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209

    Article  Google Scholar 

  • Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari R, Angeli M, Pontoni F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82

    Article  Google Scholar 

  • Cascini L, Ferlisi S, Peduto D, Fornaro G, Manunta M (2007) Analysis of a subsidence phenomenon via DInSAR data and geotechnical criteria. Ital Geotech J 41(4):50–67

    Google Scholar 

  • Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ 102(3–4):195–210

    Article  Google Scholar 

  • Casu F, Elefante S, Imperatore P, Zinno I, Manunta M, De Luca C, Lanari R (2014) SBAS-DInSAR parallel processing for deformation time-series computation. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3285–3296

    Article  Google Scholar 

  • Crosetto M, Crippa B, Biescas E (2005) Early detection and in-depth analysis of deformation phenomena by radar interferometry. Eng Geol 79(1/2):81–91

    Article  Google Scholar 

  • D’Auria L, Pepe S, Castaldo R, Giudicepietro F, Macedonio G, Ricciolino P, Tizzani P, Casu F, Lanari R, Manzo M, Martini M, Sansosti E, Zinno I (2015) Magma injection beneath the urban area of Naples: a new mechanism for the 2012-2013 volcanic unrest at Campi Flegrei caldera. Scientific Reports 5:13100. doi:10.1038/srep13100

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Non-linear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data- stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470

    Article  Google Scholar 

  • Franceschetti G, Lanari R (1999) Synthetic aperture radar processing. CRC Press, Boca Raton

    Google Scholar 

  • Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential interferometry. J Geophys Res 94(B7):9183–9191

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):L23611

    Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302., http://dx.doi.org/10.1029/2008GL034654

  • Kampes BM (2006) Radar interferometry: persistent scatterer technique. Springer, Dordrecht

    Google Scholar 

  • Lanari R, Mora O, Manunta M, Mallorquí JJ, Berardino P, Sansosti E (2004a) A small baseline approach for investigating deformations on full resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens 42:1377–1386

    Article  Google Scholar 

  • Lanari R, Lundgren P, Manzo M, Casu F (2004b) Satellite radar inter- ferometry time series analysis of surface deformation for Los Angeles, California. Geophys Res Lett 31(23):L23 613–1–L23 613–5

    Google Scholar 

  • Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M, Pepe A (2007a) An overview of the small BAseline subset algorithm: a DInSAR technique for surface deformation analysis. Pure Appl Geophys (PAGEOPH) 164(4):637–661

    Article  Google Scholar 

  • Lanari R, Casu F, Manzo M, Lundgren P (2007b) Application of the SBAS-DInSAR technique to fault creep: a case study of the Hayward fault, California. Remote Sens Environ 109(1):20–28

    Article  Google Scholar 

  • Lanari R, Berardino P, Bonano M, Casu F, Manconi A, Manunta M, Manzo M, Pepe A, Pepe S, Sansosti E, Solaro G, Tizzani P, Zeni G (2010) Surface displacements associated with the L’Aquila 2009 Mw 63 earthquake Central Italy: new evidence from DInSAR time series analysis. Geophys Res Letter 37:L20309, doi:101029/2010GL044780

    Google Scholar 

  • Manzo M, Ricciardi GP, Casu F, Ventura G, Zeni G, Borgström S, Berardino P, Del Gaudio C, Lanari R (2006) Surface deformation analysis in the Ischia island (Italy) based on spaceborne radar interferometry. J Volcanol Geotherm Res 151:399–416. doi:10.1016/j.jvolgeores.2005.09.010

    Article  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364(6433):138–142

    Article  Google Scholar 

  • Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570

    Article  Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:441–500

    Article  Google Scholar 

  • Mora O, Mallorquí JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci. Remote Sens 41:2243–2253

    Article  Google Scholar 

  • Peltzer G, Rosen PA (1995) Surface displacement of the 17 May 1993 Eureka Valley earthquake observed by SAR interferometry. Science 268:1333–1336

    Google Scholar 

  • Pepe A, Sansosti E, Berardino P, Lanari R (2005) On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique. IEEE Geosci Remote Sens Lett 2(3):265–269

    Article  Google Scholar 

  • Rignot E (1998) Fast recession of a west Antarctic glacier. Science 281:549–551

    Article  Google Scholar 

  • Rucci A, Ferretti A, Monti Guarnieri A, Rocca F (2012) Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens Environ 120:156–163

    Article  Google Scholar 

  • Sansosti E, Casu F, Manzo M, Lanari R (2010) Space-borne radar interferometry techniques for the generation of deformation time series: an advanced tool for Earth’s surface displacement analysis. Geophys Res Lett 37:L20305

    Article  Google Scholar 

  • Sansosti E, Berardino P, Bonano M, Calo’ F, Castaldo R, Casu F, Manunta M, Manzo M, Pepe A, Pepe S, Solaro G, Tizzani P, Zeni G, Lanari R (2014) How second generation SAR systems are impacting the analysis of ground deformation. Int J Appl Earth Obs Geoinf 28:1–11. doi:10.1016/j.jag.2013.10.007.

  • Stramondo S, Saroli M, Tolomei C, Moro M, Doumaz F, Pesci A, Loddo F, Baldi P, Boschi E (2007) Surface movements in Bologna (Po Plain—Italy) detected by multitemporal DInSAR. Remote Sens Environ 110:304–316

    Article  Google Scholar 

  • Tapete D, Fanti R, Cecchi R, Petrangeli P, Casagli N (2012) Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J Geophys Eng 9:S10–S25

    Article  Google Scholar 

  • Tesauro M, Berardino P, Lanari R, Sansosti E, Fornaro G, Franceschetti G (2000) Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophys Res Lett 27(13):1961–1964

    Article  Google Scholar 

  • Tizzani P, Battaglia M, Zeni G, Attori S, Berardino P, Lanari R (2009) Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements. Geology 37(1):63–66. doi:10.1130/G25318A.1

    Article  Google Scholar 

  • Tizzani P, Castaldo R, Solaro G, Pepe S, Bonano M, Casu F, Manunta M, Manzo M, Pepe A, Samsonov S, Lanari R, Sansosti E (2013) New insights into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground deformation InSAR measurements. Geophys Res Lett 40(10):1971–1977. doi:10.1002/grl.50290

    Article  Google Scholar 

  • Trasatti E, Casu F, Giunchi C, Pepe S, Solaro G, Tagliaventi S, Berardino P, Manzo M, Pepe A, Ricciardi GP, Sansosti E, Tizzani P, Zeni G, Lanari R (2008) The 2004–2006 uplift episode at Campi Flegrei caldera (Italy): constraints from SBAS-DInSAR ENVISAT data and Bayesian source inference. Geophys. Res. Lett. 35:L073078. doi:10.1029/2007GL033091

    Article  Google Scholar 

  • Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M, Navas Traver I, Deghaye P, Duesmann B, Rosich B, Miranda N, Bruno C, L’Abbate M, Croci R, Pietropaolo A, Huchler M, Rostan F (2012) GMES Sentinel-1 mission. Remote Sens Environ 120:9–24

    Article  Google Scholar 

  • Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In: Proceedings of the geoscience and remote sensing symposium, Toulouse, France, 21–25 July 2003, 7, 4362–4364

    Google Scholar 

  • Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens 30:950–959

    Article  Google Scholar 

  • Zeni G, Bonano M, Casu F, Manunta M, Manzo M, Marsella M, Pepe A, Lanari R (2011) Long term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Roma Italy. J Geophys Eng 8:S1 doi:101088/1742-2132/8/3/S01

    Google Scholar 

  • Zinno I, Elefante S, Mossucca L, De Luca C, Manunta M, Terzo O, Lanari R, Casu F (2015) A first assessment of the P-SBAS DInSAR algorithm performances within a cloud computing environment. IEEE J Sel Top Appl Earth Obs Remote Sens 8:10

    Article  Google Scholar 

Download references

Acknowledgments

This work has partially been funded by the Italian Department of Civil Protection (DPC); the manuscript contents reflect authors’ positions that could be different from the DPC official statements. The work has also been supported by the I-AMICA project (PONa3 00363). We thank the European and Italian Space Agency for providing the ERS/ENVISAT and COSMO-SkyMed data, respectively. We also thank the NASA SRTM mission for the DEM of the Napoli Bay area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Bonano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bonano, M., Manzo, M., Casu, F., Manunta, M., Lanari, R. (2017). DInSAR for the Monitoring of Cultural Heritage Sites. In: Masini, N., Soldovieri, F. (eds) Sensing the Past. Geotechnologies and the Environment, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-50518-3_6

Download citation

Publish with us

Policies and ethics