DInSAR for the Monitoring of Cultural Heritage Sites

Differential SAR Interferometry for the Investigation of Deformations Affecting Cultural Heritage Sites: The Case Study of the Ancient Roman City of Pompeii (Italy)
  • Manuela BonanoEmail author
  • Mariarosaria Manzo
  • Francesco Casu
  • Michele Manunta
  • Riccardo Lanari
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)


Detection and monitoring of deformations affecting cultural heritage sites and their surroundings represent a key issue for developing strategies for their preservation, particularly in the case of extended archaeological areas. In this chapter, we first introduce the differential SAR interferometry (DInSAR) techniques that, thanks to their capability of performing noninvasive deformation analyses, provide valuable information about the spatial and the temporal evolution of the detected displacements. Subsequently, we present the DInSAR results achieved over the whole archaeological site of the ancient Roman city of Pompeii (Italy), and focus on some historical buildings where small displacements, involving portions or the whole complex structure, have been detected.

The performed analysis confirms the relevance of the DInSAR techniques for developing sustainable strategies aimed at the preservation of cultural and historical heritage sites.


Archaeological Site Synthetic Aperture Radar Shuttle Radar Topography Mission Synthetic Aperture Radar Image Synthetic Aperture Radar Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has partially been funded by the Italian Department of Civil Protection (DPC); the manuscript contents reflect authors’ positions that could be different from the DPC official statements. The work has also been supported by the I-AMICA project (PONa3 00363). We thank the European and Italian Space Agency for providing the ERS/ENVISAT and COSMO-SkyMed data, respectively. We also thank the NASA SRTM mission for the DEM of the Napoli Bay area.


  1. Arangio S, Calo’ F, Di Mauro M, Bonano M, Marsella M, Manunta M (2013) An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome, Struct Infrastruct Eng Maint, Manag Life-Cycle Des Perform:1–15Google Scholar
  2. Badger L, Grance T, Patt Corner R, Voas J (2012) Cloud computing synopsis and recommendations, NIST special publication 800–146. National Institute of Standards and Technology, US. Department of Commerce, Gaithersburg, MDGoogle Scholar
  3. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new Algorithm for surface deformation monitoring based on small baseline differential SAR Interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383CrossRefGoogle Scholar
  4. Bock Y, Wdowinski S, Ferretti A, Novali F, Fumagalli A (2012) Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochem Geophys Geosyst 13:Q03023Google Scholar
  5. Bonano M, Manunta M, Marsella M, Lanari R (2012) Long-term ERS/ENVISAT deformation time-series generation at full spatial resolution via the extended SBAS technique. Int J Remote Sens 33:4756–4783CrossRefGoogle Scholar
  6. Bonano M, Manunta M, Pepe A, Paglia L, Lanari R (2013) From previous C-Band to New X-Band SAR systems: assessment of the DInSAR mapping improvement for deformation time-series retrieval in urban areas. IEEE Trans Geosci Remote Sens 51(4):1973–1984CrossRefGoogle Scholar
  7. Burgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209CrossRefGoogle Scholar
  8. Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari R, Angeli M, Pontoni F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82CrossRefGoogle Scholar
  9. Cascini L, Ferlisi S, Peduto D, Fornaro G, Manunta M (2007) Analysis of a subsidence phenomenon via DInSAR data and geotechnical criteria. Ital Geotech J 41(4):50–67Google Scholar
  10. Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ 102(3–4):195–210CrossRefGoogle Scholar
  11. Casu F, Elefante S, Imperatore P, Zinno I, Manunta M, De Luca C, Lanari R (2014) SBAS-DInSAR parallel processing for deformation time-series computation. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3285–3296CrossRefGoogle Scholar
  12. Crosetto M, Crippa B, Biescas E (2005) Early detection and in-depth analysis of deformation phenomena by radar interferometry. Eng Geol 79(1/2):81–91CrossRefGoogle Scholar
  13. D’Auria L, Pepe S, Castaldo R, Giudicepietro F, Macedonio G, Ricciolino P, Tizzani P, Casu F, Lanari R, Manzo M, Martini M, Sansosti E, Zinno I (2015) Magma injection beneath the urban area of Naples: a new mechanism for the 2012-2013 volcanic unrest at Campi Flegrei caldera. Scientific Reports 5:13100. doi: 10.1038/srep13100 CrossRefGoogle Scholar
  14. Ferretti A, Prati C, Rocca F (2000) Non-linear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212CrossRefGoogle Scholar
  15. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data- stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470CrossRefGoogle Scholar
  16. Franceschetti G, Lanari R (1999) Synthetic aperture radar processing. CRC Press, Boca RatonGoogle Scholar
  17. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential interferometry. J Geophys Res 94(B7):9183–9191CrossRefGoogle Scholar
  18. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):L23611Google Scholar
  19. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302.,
  20. Kampes BM (2006) Radar interferometry: persistent scatterer technique. Springer, DordrechtGoogle Scholar
  21. Lanari R, Mora O, Manunta M, Mallorquí JJ, Berardino P, Sansosti E (2004a) A small baseline approach for investigating deformations on full resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens 42:1377–1386CrossRefGoogle Scholar
  22. Lanari R, Lundgren P, Manzo M, Casu F (2004b) Satellite radar inter- ferometry time series analysis of surface deformation for Los Angeles, California. Geophys Res Lett 31(23):L23 613–1–L23 613–5Google Scholar
  23. Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M, Pepe A (2007a) An overview of the small BAseline subset algorithm: a DInSAR technique for surface deformation analysis. Pure Appl Geophys (PAGEOPH) 164(4):637–661CrossRefGoogle Scholar
  24. Lanari R, Casu F, Manzo M, Lundgren P (2007b) Application of the SBAS-DInSAR technique to fault creep: a case study of the Hayward fault, California. Remote Sens Environ 109(1):20–28CrossRefGoogle Scholar
  25. Lanari R, Berardino P, Bonano M, Casu F, Manconi A, Manunta M, Manzo M, Pepe A, Pepe S, Sansosti E, Solaro G, Tizzani P, Zeni G (2010) Surface displacements associated with the L’Aquila 2009 Mw 63 earthquake Central Italy: new evidence from DInSAR time series analysis. Geophys Res Letter 37:L20309, doi:101029/2010GL044780Google Scholar
  26. Manzo M, Ricciardi GP, Casu F, Ventura G, Zeni G, Borgström S, Berardino P, Del Gaudio C, Lanari R (2006) Surface deformation analysis in the Ischia island (Italy) based on spaceborne radar interferometry. J Volcanol Geotherm Res 151:399–416. doi: 10.1016/j.jvolgeores.2005.09.010 CrossRefGoogle Scholar
  27. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364(6433):138–142CrossRefGoogle Scholar
  28. Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570CrossRefGoogle Scholar
  29. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:441–500CrossRefGoogle Scholar
  30. Mora O, Mallorquí JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci. Remote Sens 41:2243–2253CrossRefGoogle Scholar
  31. Peltzer G, Rosen PA (1995) Surface displacement of the 17 May 1993 Eureka Valley earthquake observed by SAR interferometry. Science 268:1333–1336Google Scholar
  32. Pepe A, Sansosti E, Berardino P, Lanari R (2005) On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique. IEEE Geosci Remote Sens Lett 2(3):265–269CrossRefGoogle Scholar
  33. Rignot E (1998) Fast recession of a west Antarctic glacier. Science 281:549–551CrossRefGoogle Scholar
  34. Rucci A, Ferretti A, Monti Guarnieri A, Rocca F (2012) Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens Environ 120:156–163CrossRefGoogle Scholar
  35. Sansosti E, Casu F, Manzo M, Lanari R (2010) Space-borne radar interferometry techniques for the generation of deformation time series: an advanced tool for Earth’s surface displacement analysis. Geophys Res Lett 37:L20305CrossRefGoogle Scholar
  36. Sansosti E, Berardino P, Bonano M, Calo’ F, Castaldo R, Casu F, Manunta M, Manzo M, Pepe A, Pepe S, Solaro G, Tizzani P, Zeni G, Lanari R (2014) How second generation SAR systems are impacting the analysis of ground deformation. Int J Appl Earth Obs Geoinf 28:1–11. doi: 10.1016/j.jag.2013.10.007.
  37. Stramondo S, Saroli M, Tolomei C, Moro M, Doumaz F, Pesci A, Loddo F, Baldi P, Boschi E (2007) Surface movements in Bologna (Po Plain—Italy) detected by multitemporal DInSAR. Remote Sens Environ 110:304–316CrossRefGoogle Scholar
  38. Tapete D, Fanti R, Cecchi R, Petrangeli P, Casagli N (2012) Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J Geophys Eng 9:S10–S25CrossRefGoogle Scholar
  39. Tesauro M, Berardino P, Lanari R, Sansosti E, Fornaro G, Franceschetti G (2000) Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophys Res Lett 27(13):1961–1964CrossRefGoogle Scholar
  40. Tizzani P, Battaglia M, Zeni G, Attori S, Berardino P, Lanari R (2009) Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements. Geology 37(1):63–66. doi: 10.1130/G25318A.1 CrossRefGoogle Scholar
  41. Tizzani P, Castaldo R, Solaro G, Pepe S, Bonano M, Casu F, Manunta M, Manzo M, Pepe A, Samsonov S, Lanari R, Sansosti E (2013) New insights into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground deformation InSAR measurements. Geophys Res Lett 40(10):1971–1977. doi: 10.1002/grl.50290 CrossRefGoogle Scholar
  42. Trasatti E, Casu F, Giunchi C, Pepe S, Solaro G, Tagliaventi S, Berardino P, Manzo M, Pepe A, Ricciardi GP, Sansosti E, Tizzani P, Zeni G, Lanari R (2008) The 2004–2006 uplift episode at Campi Flegrei caldera (Italy): constraints from SBAS-DInSAR ENVISAT data and Bayesian source inference. Geophys. Res. Lett. 35:L073078. doi: 10.1029/2007GL033091 CrossRefGoogle Scholar
  43. Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M, Navas Traver I, Deghaye P, Duesmann B, Rosich B, Miranda N, Bruno C, L’Abbate M, Croci R, Pietropaolo A, Huchler M, Rostan F (2012) GMES Sentinel-1 mission. Remote Sens Environ 120:9–24CrossRefGoogle Scholar
  44. Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In: Proceedings of the geoscience and remote sensing symposium, Toulouse, France, 21–25 July 2003, 7, 4362–4364Google Scholar
  45. Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens 30:950–959CrossRefGoogle Scholar
  46. Zeni G, Bonano M, Casu F, Manunta M, Manzo M, Marsella M, Pepe A, Lanari R (2011) Long term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Roma Italy. J Geophys Eng 8:S1 doi:101088/1742-2132/8/3/S01Google Scholar
  47. Zinno I, Elefante S, Mossucca L, De Luca C, Manunta M, Terzo O, Lanari R, Casu F (2015) A first assessment of the P-SBAS DInSAR algorithm performances within a cloud computing environment. IEEE J Sel Top Appl Earth Obs Remote Sens 8:10CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manuela Bonano
    • 1
    • 2
    Email author
  • Mariarosaria Manzo
    • 2
  • Francesco Casu
    • 2
  • Michele Manunta
    • 2
  • Riccardo Lanari
    • 2
  1. 1.Institute of Methodologies for Environmental AnalysisNational Research CouncilTito ScaloItaly
  2. 2.Institute for Electromagnetic Sensing of the EnvironmentNational Research CouncilNaplesItaly

Personalised recommendations