LiDAR for Archaeological Research and the Study of Historical Landscapes

  • Adrian S. Z. Chase
  • Diane Z. Chase
  • Arlen F. ChaseEmail author
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)


Remote sensing technologies have helped to revolutionize archaeology. LiDAR (light detection and ranging), a remote sensing technology in which lasers are used as topographic scanners that can penetrate foliage, has particularly influenced researchers in the field of settlement or landscape archaeology. LiDAR provides detailed landscape data for broad spatial areas and permits visualization of these landscapes in ways that were never before possible. These data and visualizations have been widely utilized to gain a better understanding of historical landscapes and their past uses by ancient peoples.


LiDAR Visualization techniques Landscapes Archaeology 


  1. Anderson J, Massaro R, Lewis L, Moyers R, Wilkins J (2010) LiDAR-activated phosphors and infrared retro-reflectors: emerging target materials for calibration and control. Photogramm Eng Remote Sens August:875–879Google Scholar
  2. Ansmann A, Muller D (2005) Lidar and atmospheric aerosol particles. In: Weitkamp C (ed) Lidar range-resolved optical remote sensing. Springer, New York, pp 105–141Google Scholar
  3. Bellina JA, Kerans C, Jennette DC (2005) Digital outcrop models: applications of terrestrial scanning LiDAR technology in stratigraphic modeling. J Sediment Res 75:166–176CrossRefGoogle Scholar
  4. Bernardini F, Sgambati A, Montagnari Kokelj M, Zaccaria C, Micheli R, Fragiacomo A, Tiussi C, Dreossi D, Tuniz C, De Min A (2013) Airborne LiDAR application to karstic areas: The example of Trieste province (north-eastern Italy) from prehistoric sites to Roman forts. J Archaeol Sci 40:2152–2160CrossRefGoogle Scholar
  5. Bewley RH, Crutchley SP, Shell CA (2005) New light on an ancient landscape: LiDAR survey in the Stonehenge world heritage site. Antiquity 79:636–647CrossRefGoogle Scholar
  6. Challis K, Forlin P, Kincey M (2011) A generic toolkit for the visualization of archaeological features on airborne LiDAR elevation data. Archaeol Prospect 18:279–289CrossRefGoogle Scholar
  7. Chase DZ, Chase AF (2014) Path dependency in the rise and denouement of a classic Maya city: the case of Caracol, Belize. In: Chase AF, Scarborough V (eds) The resilience and vulnerability of ancient landscapes: transforming Maya archaeology through IHOPE. American Anthropological Association, Arlington, pp 142–154Google Scholar
  8. Chase AF, Chase DZ, Weishampel JF (2010) Lasers in the jungle: airborne sensors reveal a vast Maya landscape. Archaeology 63(4):27–29Google Scholar
  9. Chase AF, Chase DZ, Weishampel JF, Drake JB, Shrestha RL, Slatton KC, Awe JJ, Carter WE (2011) Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J Archaeol Sci 38:387–398CrossRefGoogle Scholar
  10. Chase AF, Chase DZ, Fisher CT, Leisz SJ, Weishampel JF (2012) Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. PNAS 109(32):12916–12921CrossRefGoogle Scholar
  11. Chase AF, Chase DZ, Awe JJ, Weishampel JF, Iannone G, Moyes H, Yaeger J, Brown MK (2014a) The use of LiDAR in understanding the ancient Maya landscape: Caracol and western Belize. Adv Archaeol Pract 2:208–221CrossRefGoogle Scholar
  12. Chase AF, Chase DZ, Awe JJ, Weishampel JF, Iannone G, Moyes H, Yaeger J, Brown MK, Shrestha RL, Carter WE, Fernandez Diaz J (2014b) Ancient Maya regional settlement and inter-site analysis: the 2013 west-central Belize LiDAR survey. Remote Sens 6(9):8671–8695CrossRefGoogle Scholar
  13. Chase AF, Reese-Taylor K, Fernandez-Diaz JC, Chase DZ (2016) Progression and issues in the Mesoamerican geospatial revolution: an introduction. Adv Archaeol Pract 4:219–231Google Scholar
  14. Cheng L, Tong L, Li M, Liu Y (2013) Semi-automatic registration of airborne and terrestrial laser scanning data using building corner matching with boundaries as a reliability check. Remote Sens 5:6260–6283CrossRefGoogle Scholar
  15. Cifani G, Opitz R, Stoddart S (2007) LiDAR survey in southern Etruria, Italy: a significant new technique for the study of cultural landscapes. Eur Archaeol 27:2–3Google Scholar
  16. Crow P, Benham S, Devereux BJ, Amable GS (2007) Woodland vegetation and its implications for archaeological survey using LiDAR. Forestry 80:241–252CrossRefGoogle Scholar
  17. Devereux BJ, Amable GS, Crow P, Cliff AD (2005) The potential of airborne LiDAR for detection of archaeological features under woodland canopies. Antiquity 79:648–660CrossRefGoogle Scholar
  18. Devereux BJ, Amable GS, Crow P (2008) Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity 82:470–479CrossRefGoogle Scholar
  19. Doneus M, Doneus N, Briese C, Pregesbauer M, Mandlburger G, Verhoeven G (2013) Airborne laser bathymetry: detecting and recording submerged archaeological sites from the air. J Archaeol Sci 40:2136–2151CrossRefGoogle Scholar
  20. Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince S (2002) Estimation of tropical forest structural characteristics using large-fooprint LiDAR. Remote Sens Environ 79:305–309CrossRefGoogle Scholar
  21. Evans DH, Fletcher RJ, Pottier C, Chevance J-B, Sourtif D, Tan BS, Im S, Ea D, Tin T, Kim S, Cromarty C, De Greef S, Hanus K, Baty P, Kuszinger R, Shimoda I, Boornazian G (2013) Uncovering archaeological landscapes at Angkor using LiDAR. PNAS 110:12595–12600CrossRefGoogle Scholar
  22. Fernandez-Diaz JC, Carter WE, Shrestha RL, Glennie CL (2014) Now you see it… now you don’t: understanding airborne mapping LiDAR collection and data product generation for archaeological research in Mesoamerica. Remote Sens 6:9951–10001CrossRefGoogle Scholar
  23. Fewtrell TJ, Duncan A, Sampson CC, Neal JC, Bates PD (2010) Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Phys Chem Earth 36:281–291CrossRefGoogle Scholar
  24. Galeazzi F, Moyes H, Aldenderfer M (2014) Comparing laser scanning and dense stereo matching techniques for 3D intrasite data recording. Adv Archaeol Pract 2:353–365CrossRefGoogle Scholar
  25. Glennie CL, Carter WE, Shrestha RL, Dietrich WE (2013) Geodetic imaging with airborne LiDAR: the Earth’s surface revealed. Rep Prog Phys 76:086801CrossRefGoogle Scholar
  26. Goyer GG, Watson R (1963) The laser and its application to meteorology. Bull Am Meteorol Soc 44:564–575Google Scholar
  27. Grob SM, Esselborn M, Abicht F, Wirth M, Fix A, Minikin A (2013) Airborne high spectral resolution LiDAR observation of pollution aerosol during EUCAARI-LONGREX. Atmos Chem Phys 13:2435–2444CrossRefGoogle Scholar
  28. Hammerle M, Hofle B (2014) Effects of reduced terrestrial LiDAR point density on high resolution grain crop surface models in precision agriculture. Sensors 14:24212–24230CrossRefGoogle Scholar
  29. Harmon JM, Leone MP, Prince SD, Snyder M (2006) LiDAR for archaeological landscape analysis: a case study of two eighteenth-century Maryland plantation sites. Am Antiq 71:649–670CrossRefGoogle Scholar
  30. Hesse R (2010) LiDAR-derived local relief models: a new tool for archaeological prospection. Archaeol Prospect 17:67–72Google Scholar
  31. Johnson KM, Ouimet WB (2014) Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). J Archaeol Sci 43:9–20CrossRefGoogle Scholar
  32. Kokalj Z, Zaksek K, Ostir K (2011) Application of sky-view factor for the visualization of historic landscape features in LiDAR-derived relief models. Antiquity 85:263–273CrossRefGoogle Scholar
  33. Ladefoged TN, McCoy MD, Asner GP, Kirch PV, Puleston CO, Chadwick OA, Vitousek PM (2011) Agricultural potential and actualized development in Hawai’i: an airborne LiDAR survey of the leeward Kohala field system (Hawai’i Island). J Archaeol Sci 38:3605–3619CrossRefGoogle Scholar
  34. Lasaponara R, Coluzzi R, Gizzi FT, Masini N (2010) On the LiDAR contribution for the archaeological and geomorphological study of a deserted medieval village in southern Italy. J Geophys Eng 7:155–163CrossRefGoogle Scholar
  35. Lato M, Diederichs MS, Hutchinson DJ, Harrap R (2009) Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. Int J Rock Mech Min Sci 46:194–199CrossRefGoogle Scholar
  36. Masini N, Lasaponara R (2013) Airborne LiDAR in archaeology: overview and a case study. In: Murgante B, Misra S, Carlini M, Torre C, Nguyen H-Q, Taniar D, Apduhan B, Gervasi O (eds) Computational science and its applications. ICCSA 2013: lecture notes in computer science 7972. Springer, Berlin, pp 663–676CrossRefGoogle Scholar
  37. McCoy MD, Asner GP, Graves MW (2011) Airborne LiDAR survey of irrigated agricultural landscapes: an application of the slope contrast method. J Archaeol Sci 38:2141–2154CrossRefGoogle Scholar
  38. Pluckhahn TJ, Thompson VD (2012) Integrating LiDAR data and conventional mapping of the Fort Center Site in south-central Florida: a comparative approach. J Field Archaeol 37(4):289–301CrossRefGoogle Scholar
  39. Prufer KM, Thompson AE, Kennett DJ (2015) Evaluating airborne LiDAR for detecting settlements and modified landscapes in disturbed tropical environments at Uxbenká, Belize. J Archaeol Sci 57:1–13CrossRefGoogle Scholar
  40. Raber GT, Jensen JR, Schill SR, Schuckman K (2002) Creation of digital terrain models using an adaptive LiDAR vegetation point removal process. Photogramm Eng Remote Sens 68:1307–1314Google Scholar
  41. Rees D, McDermid IS (1990) Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent doppler LiDAR. Appl Opt 29:4133–4144CrossRefGoogle Scholar
  42. Ring J (1963) The laser in astronomy. New Scientist 344:672–673Google Scholar
  43. Risbøl O, Gjertsen AK, Skare K (2006) Airborne laser scanning of cultural remains in forests: some preliminary results from a Norwegian project. In: From Space to Place. Proceedings of the 2nd international conference on remote sensing in archaeology: BAR International Series.Google Scholar
  44. Risbøl O, Bollandsås OM, Nesbakken A, Ørka OH, Næsset E, Gobakken T (2013) Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. J Archaeol Sci 40(12):4688–4700CrossRefGoogle Scholar
  45. Rochelo MJ, Davenport C, Selch D (2015) Revealing pre-historic native American Belle Glade earthworks in the northern Everglades utilizing airborne LiDAR. J Archaeol Sci Rep 2:624–643Google Scholar
  46. Romero BE, Bray TL (2014) Analytical applications of fine-scale terrestrial LiDAR at the imperial Inca site of Caranqui, northern highland Ecuador. World Archaeol 46:25–42CrossRefGoogle Scholar
  47. Shih PT-Y, Chen Y-H, Chen J-C (2014) Historic shipwreck study in Dongsha Atoll with bathymetric LiDAR. Archaeol Prospect 21:139–146CrossRefGoogle Scholar
  48. Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J Photogramm Remote Sens 59:85–101CrossRefGoogle Scholar
  49. Sittler B (2004) Revealing historical landscapes by using airborne laser scanning. A 3-D Modell of Ridge and Furrow in Forests near Rastatt (Germany). In: Proceedings of Natscan, Laser-Scanners for Forest and Landscape Assessment: Instruments, Processing Methods and Applications, International Archives of Photogrammetry and Remote SensingGoogle Scholar
  50. Stepinski TFF, Jasiewicz J (2011) Geomorphons – a new approach to classification of landforms.
  51. Veerabuthiran S, Razdan AD (2011) LiDAR for detection of chemical and biological warfare agents. Def Sci J 61(3):241–250CrossRefGoogle Scholar
  52. Weber J, Powis TG (2014) Assessing terrestrial laser scanning in complex environments. Adv Archaeol Pract 2:123–137CrossRefGoogle Scholar
  53. White DA (2013) LiDAR, point clouds, and their archaeological applications. In: Comer DC, Harrower MJ (eds) Mapping archaeological landscapes from space. Springer, New York, pp 175–186CrossRefGoogle Scholar
  54. Wienhold ML (2013) Prehistoric land use and hydrology: a multi-scalar spatial analysis in central Arizona. J Archaeol Sci 40:850–859CrossRefGoogle Scholar
  55. Yoeli P (1967) The mechanization of analytical hill shading. Cartogr J 4(2):82–88CrossRefGoogle Scholar
  56. Zuber MT, Smith DE, Solomon SC, Abshire JB, Afzal RS, Aharonson O, Fishbaugh K, Ford FG, Frey HV, Garvin JB, Head JW, Ivanov AB, Johnson CL, Muhleman DO, Neumann GA, Pettengill GH, Phillips RJ, Sun X, Zwally HJ, Banerdt B, Duxbury TC (1998) Observations of the north polar region of Mars from the Mars orbiter laser altimeter. Science 282:2053–2060CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Adrian S. Z. Chase
    • 1
  • Diane Z. Chase
    • 2
  • Arlen F. Chase
    • 3
    Email author
  1. 1.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  2. 2.Office of the Executive Vice President and ProvostUniversity of Nevada, Las VegasLas VegasUSA
  3. 3.Department of AnthropologyUniversity of Nevada, Las VegasLas VegasUSA

Personalised recommendations