Integrated In Situ Investigations for the Restoration: The Case of Regio VIII in Pompeii

  • Nicola MasiniEmail author
  • Maria Sileo
  • Giovanni Leucci
  • Francesco Soldovieri
  • Antonio D’Antonio
  • Lara de Giorgi
  • Antonio Pecci
  • Manuela Scavone
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)


This chapter presents the study case of the integration of noninvasive in situ investigation methods able to provide information useful to survey and characterize the state of decay of some masonry walls and frescoes in two blocks (insulae) of the Regio VIII in Pompeii. The integrated investigations demonstrated the complementarity of ground-penetrating radar (GPR), seismic tomography, and infrared thermography (IRT) for the diagnosis of the state of conservation and the restoration of structures and surfaces of archaeological monuments. The investigation was very useful in planning the restoration work.


Pompeii Restoration Non invasive in situ investigations GPR Infrared thermography Seismic tomography 



The present publication is based on the results of non invasive investigations performed in 2015 by CNR_IBAM, funded by Samoa srl, for the restoration of Regio VIII.

Author Contributions

N. Masini conceived the study. N. Masini and M. Sileo wrote the paper, with the contribution of G. Leucci for paragraphs 29.3.2. 29.3.3 and 29.4.2, and A. D’Antonio for the study area (paragraph 29.2). F. Soldovieri reviewed the manuscript. GPR and seismic data have been acquired by G. Leucci, L. De Giorgi and M. Sileo. Leucci and Sileo processed GPR data. Seismic data have been processed by Leucci. Infrared data have been acquired and processed by M. Sileo. The terrestrial surveys has been performed by M. Scavone, A. Pecci and A. D’Antonio, the UAV-based surveys has been made by A. Pecci. The interpretation of data has been done by N. Masini, G. Leucci, M. Scavone, M. Sileo.


  1. Avdelidis NP, Moropoulou A (2004) Applications of infrared thermography for the investigation of historic structures. J Cult Herit 5:119–127CrossRefGoogle Scholar
  2. Binda L, Saisi A, Zanzi L (2003) Sonic tomography and flat jack tests as complementary investigation procedures for the stone pillars of the temple of S.Nicolo’ L’Arena (Italy). NDT & E Int 36:215–227CrossRefGoogle Scholar
  3. Binda L, Zanzi L, Lualdi M, Condoleo P (2005) The use of georadar to assess damage to a masonry Bell Tower in Cremona, Italy. NDT & E Int 38(3):171–179CrossRefGoogle Scholar
  4. Brandi C (1963) Teoria del restauro di Cesare Brandi. Edizioni di Storia e Letteratura, RomeGoogle Scholar
  5. Cardarelli E, Godio A, Morelli G, Sambuelli L, Santarato G, Socco LV (2002) Integrated geophysical surveys to investigate the Scarsella vault of St. John’s Baptistery in Florence. Lead Edge 67:467–470CrossRefGoogle Scholar
  6. Carlomagno GM, Di Maio R, Fedi M, Meola C (2011) Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys. J. Geophys. Eng 8(2011):S93–S105CrossRefGoogle Scholar
  7. Cataldo R, De Donno A, De Nunzio G, Leucci G, Nuzzo L, Siviero S (2005) Integrated methods for analysis of deterioration of cultural heritage: the Crypt of “Cattedrale di Otranto”. J Cult Herit 6:29–38CrossRefGoogle Scholar
  8. Conyers LB (2004) Ground-penetrating Radar for archaeology. AltaMira, Walnut CreekGoogle Scholar
  9. Conyers LB (2012) Interpreting ground-penetrating Radar for archaeology. Left Coast Press, Walnut CreekGoogle Scholar
  10. Conyers LB, Goodman D (1997) Ground-penetrating Radar: an introduction for archaeologists. AltaMira, Walnut CreekGoogle Scholar
  11. Cosentino PL, Capizzi P, Fiandaca G, Martorana R, Messina P (2009) Advances in micro geophysics for engineering and cultural heritage. J Earth Sci 20:626–639CrossRefGoogle Scholar
  12. D’Aranno PJV et al (2015) High-resolution geomatic and geophysical techniques integrated with chemical analyses for the characterization of a Roman wall. J Cult Herit. doi: 10.1016/j.culher.2015.06.005 Google Scholar
  13. Danese M, Demšar U, Masini N, Charlton M (2010) Investigating material decay of historic buildings using visual analytics with multi-temporal infrared thermographic data. Archaeometry 52(3):482–501CrossRefGoogle Scholar
  14. Dumoulin J (2016) Infrared thermography: from sensing principle to non destructive testing considerations. In: Masini N, Soldovieri F (eds) Sensing the past. Springer, ChamGoogle Scholar
  15. Fiorelli G (1875) Descrizione di Pompei. Tipografia Italiana, NapoliGoogle Scholar
  16. Gabellone F, Leucci G, Masini N, Persico R, Quarta G, Grasso F (2013) Non-destructive prospecting and virtual reconstruction of the chapel of the Holy Spirit in Lecce, Italy. Near Surf Geophys. doi: 10.3997/1873-0604.2012030 Google Scholar
  17. Garcia L (2006) Danni di guerra a Pompei. Una dolorosa vicenda quasi dimenticata, Studi della Soprintendenza Archeologica di Pompei 15. “L’Erma” di Bretschneider, RomaGoogle Scholar
  18. Goodman D (2013) GPR Slice Version 7.0 Manual. Accessed 28 Jan 2017
  19. Grinzato EP, Bison G, Marinetti S (2002a) Monitoring of ancient buildings by the thermal method. J Cult Herit 3(2002):21–29CrossRefGoogle Scholar
  20. Grinzato EP, Bressan C, Marinetti S, Bison PG, Bonacina C (2002b) Monitoring of the Scrovegni Chapel by IR thermography: Giotto at infrared. Infrared Phys Technol 43(3–5):165–169CrossRefGoogle Scholar
  21. ICOMOS (2003) ICOMOS Charter- principles for the analysis, conservation and structural restoration of architectural heritage. Ratified by the ICOMOS 14th General Assembly, in Victoria Falls, Zimbabwe, October 2003Google Scholar
  22. Inagaki T, Ishii T, Iwamoto T (1999) On the NDT and E for the diagnosis of defects using infrared thermography. NDT&E Int 32:247–257CrossRefGoogle Scholar
  23. Ioppolo G (ed) (1992) Le Terme del Sarno a Pompei. Iter di un’analisi per la conoscenza, il restauro e la protezione sismica del monumento, Soprintendenza Archeologica di Pompei. Monografie 5. “L’Erma” di Bretschneider, RomaGoogle Scholar
  24. Koloski Ostrow A (1990) The Sarno Bath Complex. “L’Erma” di Bretschneider, RomaGoogle Scholar
  25. Kordatos EZ, Exharcos DA, Stavrakos C, Moropoulou A, Matikas TE (2013) Infrared thermographic inspection of murals and characterization of degradation in historic monuments. Constr Build Mater 48:1261–1265CrossRefGoogle Scholar
  26. Leucci G (2016) Seismic and Sonic Applications on artifacts and historical building. In: Masini N, Soldovieri F (eds) Sensing the past. Springer, ChamGoogle Scholar
  27. Leucci G, Masini N, Persico R, Soldovieri F (2011) GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico. J Geophys Eng 8(3):76–92. doi: 10.1088/1742-2132/8/3/S08 CrossRefGoogle Scholar
  28. Leucci G, Masini N, Persico R, Quarta G, Dolce C (2012) A multidisciplinary analysis of the crypt of the holy spirit in monopoli (Southern Italy). Near Surf Geophys 10:1–8. doi: 10.3997/1873-0604.2011032 CrossRefGoogle Scholar
  29. Leucci G, Persico R, Soldovieri F (2007) Detection of fractures from GPR data: the case history of the Cathedral of Otranto. J Geophys Eng 4:452–461CrossRefGoogle Scholar
  30. Maierhofer C, Leipold S (2001) Radar investigation of masonry structures. NDT & E Int 34:139–147CrossRefGoogle Scholar
  31. Maierhofer C et al (2003) Detection of shallow voids in concrete structures with impulse thermography and radar. NDT&E Int 36:257–263CrossRefGoogle Scholar
  32. Masini N, Nuzzo L, Rizzo E (2007) GPR investigations for the study and the restoration of the Rose Window of Troia Cathedral (Southern Italy). Near Surf Geophys 5:287–300CrossRefGoogle Scholar
  33. Masini N, Persico R, Rizzo E (2010a) Some examples of GPR prospecting for monitoring of the monumental heritage. J Geophys Eng 7:190–199. doi: 10.1088/1742-2132/7/2/S05
  34. Masini N, Persico R, Rizzo E, Calia A, Giannotta MT, Quarta G, Pagliuca A (2010b) Integrated techniques for analysis and monitoring of historical monuments: the case of S. Giovanni al Sepolcro in Brindisi (Southern Italy). Near Surf Geophys 8(5):423–432. doi: 10.3997/1873-0604.2010012 Google Scholar
  35. Masini N, Gabellone F, Leucci G, Persico R, Soldovieri F (2013) Enhancement of the information content available from non invasive diagnostics for restoration and knowledge of architectural heritage. In: Proceedings of Built heritage 2013 monitoring conservation management, Milano, 18–20 Nov 2013, pp 824–828Google Scholar
  36. Mau A (1900) Pompeji in Leben und Kunst. Engelmann, LeipzigGoogle Scholar
  37. Meier T, Aura M, Fehr M, Köhn D, Cristiano L, Sobott R, Mosca I, Ettl H, Eckel F, Steinkraus T, Erkul E, Schulte-Kortnack D, Sigloch K, Bilgili F, Di Gioia E, Parisi Presicce C (2016) Chapter XX: Investigating surficial alterations of natural stone by ultrasonic surface measurements. In: Masini N, Soldovieri F (eds) Sensing the past. Geoscience and sensing technologies for cultural heritage. Springer, ChamGoogle Scholar
  38. Moropoulou A, Labropoulos K, Delegou E, Bakolas A (2013) Non-destructive techniques as a tool for the protection of built cultural heritage. Constr Build Mater 48:1222–1239CrossRefGoogle Scholar
  39. Nuzzo L, Masini N, Rizzo E, Lasaponara R (2007) Integrated and multiscale NDT for the study of architectural heritage. In: Michel U, Civco DL, Ehlers M, Kaufmann HJ (eds) Proceedings of SPIE, remote sensing for environmental monitoring, GIS applications, and geology VIII, vol. 7110, p 711015Google Scholar
  40. Nuzzo L, Calia A, Liberatore D, Masini N, Rizzo E (2010) Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window. Adv Geosci 24:69–82CrossRefGoogle Scholar
  41. Pérez-Gracia V, Caselles JO, Clapés J, Martinez G, Osorio R (2013) Non-destructive analysis in cultural heritage buildings: evaluating the Mallorca cathedral supporting structures. NDT & E Int 59:40–47CrossRefGoogle Scholar
  42. Pérez-Gracia V, González-Drigo R, Di Capua D (2008) Horizontal resolution in a non-destructive shallow GPR survey: an experimental evaluation. NDT&E Int 41:611–620CrossRefGoogle Scholar
  43. Persico R (2014) Introduction to ground penetrating radar: inverse scattering and data processing. Wiley, Hoboken. ISBN:9781118305003Google Scholar
  44. Persico R, Sato M (2016) Ground penetrating radar: technologies and data processing issue for applications in the field of cultural heritage. In: Masini N, Soldovieri F (eds) Sensing the past. Springer, ChamGoogle Scholar
  45. Persico R, Soldovieri F (2008) Effects of the background removal in linear inverse scattering. IEEE Trans Geosci Remote Sens 46(4):1104–1114CrossRefGoogle Scholar
  46. Ranalli D, Scozzafava M, Tallini M (2004) Ground penetrating radar investigations for the restoration of historic buildings: the case study of the Collemaggio Basilica (L’Aquila, Italy). J Cult Herit 5:91–99Google Scholar
  47. Russell JK, Stasiuk MV (1997) Characterization of volcanic deposits with ground-penetrating radar. Bull Volcanol 58(7):515–527CrossRefGoogle Scholar
  48. Saisi A, Gentile C, Guidobaldi M (2015) Post-earthquake continuos dynamic monitoring of the Gabbia Tower in Mantua, Italy. Constr Build Mater 81:101–112CrossRefGoogle Scholar
  49. Soldovieri F, Orlando L (2009) Novel tomographic based approach and processing strategies for GPR measurements using multifrequency antennas. J Cult Herit 10:e83–e92CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nicola Masini
    • 1
    Email author
  • Maria Sileo
    • 1
  • Giovanni Leucci
    • 2
  • Francesco Soldovieri
    • 3
  • Antonio D’Antonio
    • 1
  • Lara de Giorgi
    • 2
  • Antonio Pecci
    • 1
  • Manuela Scavone
    • 1
  1. 1.CNR-IBAM Institute for Archaeological and Monumental HeritageTito ScaloItaly
  2. 2.Institute of Archaeological and Monumental HeritageCNR (National Research Council)-IBAM (Italy)LecceItaly
  3. 3.Institute for Electromagnetic Sensing of the Environment (CNR-IREA)NapoliItaly

Personalised recommendations