Wireless Monitoring to Detect Decay Factors in Natural Heritage Scenarios in Spain: A Case Study at Lanzarote

  • María Inmaculada Martínez-GarridoEmail author
  • Rafael Fort González
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)


This chapter discusses a study conducted primarily to assess the quality of the communications delivered by a Smartmote wireless platform in the Jameos del Agua volcanic tunnel on the Spanish island of Lanzarote. The findings identified coverage needs and the position of tracking points required for a long-term monitoring campaign. The environmental conditions outside and the microclimate inside the tunnel were monitored with the wireless sensor network and backup data loggers to quantify conditions in the areas most heavily impacted by the major factors of decay: human presence and solar radiation. The thermal and relative humidity gradients inside the materials were also determined. In addition, the platform detected tidal-induced rises in humidity that affect the lake inside the volcanic tube.


Wireless Sensor Network Synthetic Aperture Radar Receive Signal Strength Indicator Microclimatic Condition Pedestrian Traffic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Casa de los Volcanes of Lanzarote Island Council, specially its director Jaime Arranz and Orlando Hernández for their help. The present study was funded under GEOMATERIALES 2 (S2013/MIT-2914) and CGL-2011-27902 projects and by the Complutense University of Madrid’s research group on Heritage Stone Material Alteration and Conservation. M.I. Martínez-Garrido participated with the support of the Moncloa Campus of International Excellence (UCM-UPM). The manuscript was edited by Margaret Clark, professional translator and English language science editor.


  1. ANSI/IEC 60529 (2004) Degrees of protection provided by enclosures (IP code) (identical national adoption). National Electrical Manufacturers Association, RosslynGoogle Scholar
  2. Borges R, Hernandez-Guerra A, Nykjaer L (2004) Analysis of sea surface temperature time series of the south-eastern North Atlantic. Int J Remote Sens 25(5):869–891CrossRefGoogle Scholar
  3. Carracedo JC, Singer B, Jicha B, Guillou H, Rodríguez Badiola E, Meco J, Pérez Torrado FJ, Gimeno D, Socorro S, Láinez A (2003) La erupción y el tubo volcánico del volcán Corona (Lanzarote, Islas Canarias). Estud Geol 59(5-6):277–302CrossRefGoogle Scholar
  4. Centros de Arte, Cultura y Turismo, Epel del Cabildo de Lanzarote (1999)
  5. Fernandez J, Yu TT, Rodriguez-Velasco G, Gonzalez-Matesanz J, Romero R, Rodriguez G, Quiros R, Dalda A, Aparicio A, Blanco MJ (2003) New geodetic monitoring system in the volcanic island of Tenerife, Canaries, Spain. Combination of InSAR and GPS techniques. J Volcanol Geotherm Res 124(3–4):241–253CrossRefGoogle Scholar
  6. Garcia A, Berrocoso M, Marrero JM, Fernandez-Ros A, Prates G, De La Cruz-Reyna S, Ortiz R (2014) Volcanic alert system (VAS) developed during the 2011–2014 El Hierro (Canary Islands) volcanic process. Bull Volcanol 76(6):825CrossRefGoogle Scholar
  7. Lopez C, Blanco MJ, Abella R, Brenes B, Cabrera Rodriguez VM, Casas B, Dominguez Cerdena I, Felpeto A, Fernandez de Villalta M, Del Fresno C, Garcia O, Garcia-Arias MJ, Garcia-Canada L, Gomis Moreno A, Gonzalez-Alonso E, Guzman Perez J, Iribarren I, Lopez-Diaz R, Luengo-Oroz N, Meletlidis S, Moreno M, Moure D, Pereda De Pablo J, Rodero C, Romero E, Sainz-Maza S, Sentre Domingo MA, Torres PA, Trigo P, Villasante-Marcos V (2012) Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophys Res Lett 39:L13303Google Scholar
  8. Marti J, Ortiz R, Gottsmann J, Garcia A, De La Cruz-Reyna S (2009) Characterising unrest during the reawakening of the central volcanic complex on Tenerife, Canary Islands, 2004–2005, and implications for assessing hazards and risk mitigation. J Volcanol Geotherm Res 182(1–2):23–33CrossRefGoogle Scholar
  9. Martínez Garrido MI (2015) Aportación de la monitorización mediante redes de sensores y técnicas no invasivas para la conservación preventiva del Patrimonio. Ph. D. thesis, School of Telecommunications Engineering (ETSIST), Technical University of Madrid, SpainGoogle Scholar
  10. Martínez-Garrido MI, Fort R (2014) Sensing technologies for monitoring and conservation of cultural heritage: wireless detection of decay factors. In: Rogerio-Candeleda MA (ed) Science, technology and cultural heritage. CRC Press, Balkema, Leiden, pp 495–501Google Scholar
  11. Martínez-Garrido MI, Fort R (2016a) Wireless communications platforms for built and natural heritage monitoring. In: In: Sensing the past: geoscience and sensing technologies for cultural heritage, Chapter 16. Springer, ChamGoogle Scholar
  12. Martínez-Garrido MI, Fort R (2016b) Experimental assessment of a wireless communications platform for the built and natural heritage. Measurement 82:188–201CrossRefGoogle Scholar
  13. Martínez-Garrido MI, Fort R (2017) Wireless communication platforms for built and natural heritage monitoring. In: Masini N, Soldovieri F (eds) Sensing the past. Geotechnol Environ16. doi: 10.1007/978-3-319-50518-3_24
  14. Maxim Integrated Products, Inc. (2013) Last update, DS1923 Maxim Integrated. Available: [01/15, 2015]
  15. Mendo A, Ortega L (1988) El túnel de La Atlántida. Geo 14:9–25Google Scholar
  16. Romero R, Carrasco D, Arana V, Fernandez J (2003) A new approach to the monitoring of deformation on Lanzarote (Canary Islands): an 8-year radar perspective. Bull Volcanol 65(1):1–7Google Scholar
  17. Sensirion (06/06/2014, 2014) Last update, datasheet SHT25. Humidity and temperature sensor. Available: [01/15, 2015]
  18. Smartmote Monitoring and Testing (2015) [06/22, 2015]
  19. Tablademareas (27/11/2014, 2014) Last update, Tabla de mareas en Arrecife, Lanzarote (Islas Canarias, España). [27/11, 2014]Google Scholar
  20. Texas Instruments Inc. (02/10/2014) Rev. Diciembre 2007, 2007: Last update, CC2520 datasheet 2.4 GHZ IEEE 802.15.4/ZIGBEE RF transceiver. Available: [01/15, 2015]
  21. Venedikov AP, Arnoso J, Cai W, Vieira R, Tan S, Velez EJ (2006) Separation of the long-term thermal effects from the strain measurements in the Geodynamics Laboratory of Lanzarote. J Geodyn 41(1–3):213–220CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • María Inmaculada Martínez-Garrido
    • 1
    Email author
  • Rafael Fort González
    • 2
  1. 1.Instituto de Geociencias (CSIC-UCM) and Departamento de Ingeniería Telemática y Electrónica (ETSIST, UPM)CEI Campus Moncloa (CSIC, UPM-UCM)MadridSpain
  2. 2.Instituto de Geociencias (CSIC-UCM)CEI Campus Moncloa (CSIC, UPM, UCM)MadridSpain

Personalised recommendations