Ultrasonic Analysis of the Spanish Cultural Heritage: Six Case Studies

  • Monica Alvarez de BuergoEmail author
  • Rafael Fort Gonzalez
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)


Nondestructive techniques (NDT) are particularly appropriate for the analysis of stone materials found in the built heritage. Moreover, portable NDTs can be used for onsite surveys of the object analyzed. Ultrasound propagation velocity (UPV) is one of the NDTs most commonly used in the diagnosis, conservation, and restoration of the cultural heritage. The technique consists in calculating the velocity from the time it takes an ultrasonic wave to travel across a known distance from an emitter to a receiver. The results provide useful information about the quality and degree of decay of building materials, which inhomogeneity must be factored into the calculations. The six examples of UPV surveys discussed here illustrate the utility of the technique in detecting areas of low velocity, which are normally indicative of decay. Combined with other NDTs and petrographic and petrophysical analyses, the findings afforded scientific and technical grounds for planning preventive, conservation, or restoration measures.


Stone Nondestructive techniques Building materials Decay 



This study was funded by the Community of Madrid under the GEOMATERIALS 2 project (S2013/MIT-2914) and the Complutense University of Madrid’s Research Group: “Alteración y Conservación de los Materiales Pétreos del Patrimonio” (ref. 921349).


  1. Alonso FJ, Suárez del Río LM (1985) Velocidad de propagación de ondas en rocas carbonatadas. Trabajos de Geología 15:315–324Google Scholar
  2. Alvarez de Buergo M, Fort R (2014) The Royal Palace of Madrid, Spain. Twenty years of stone conservation research. In: Brai M, Tranchina L, Alberghina M, Fontana D, Fernandez F (eds) Diagnostics for cultural heritage. Analytical approach for an effective conservation. UniNetLab, DiFC, Universita degli Studi di Palermo, Italia, pp 9–15. ISBN 978-88-907460-5-5Google Scholar
  3. Álvarez de Buergo M, González T (1994) Estudio del método de la medida de la velocidad de propagación del sonido y su aplicación a edificios históricos. Ingeniería Civil 94:69–74Google Scholar
  4. Benavente D, Martínez-Martínez J, Jáuregui P et al (2006) Assessment of the strength of building rocks using signal processing procedures. Constr Build Mater 20:562–568CrossRefGoogle Scholar
  5. Bodare A (1996) Non destructive test methods of cultural stone. Division of Soil and Rock Mechanics, Department of Civil and Environmental Engineering, Royal Institute of Technology, StockholmGoogle Scholar
  6. Cantó de Gregorio A M (2007) La ‘Piedra Escrita’ de Diana en Cenicientos (Madrid) y la frontera oriental de Lusitania. Last access 21 July 2015
  7. Doehne E, Price CA (2010) Stone conservation: an overview of current research. 2nd edn. (Research in conservation). The getty conservation institute Los AngelesGoogle Scholar
  8. Fort R (2008) Aplicación de la técnica de propagación de ondas ultrasónicas en el patrimonio pétreo. In: Actas de las III Jornadas Técnicas Durabilidad y conservación de materiales tradicionales naturales del patrimonio arquitectónico. Instituto Tecnológico de Rocas Ornamentales y Materiales de Construcción (INTROMAC). ISBN 978-84-691-5918-7Google Scholar
  9. Fort R, Alvarez de Buergo M, Mingarro F, López de Azcona MC (2004) Stone decay in XVIII century monuments due to iron corrosion. The Royal Palace, Madrid (Spain). Build Environ 39:357–364CrossRefGoogle Scholar
  10. Fort R, Alvarez de Buergo M, Perez-Monserrat EM, Varas MJ (2010) Characterisation of monzogranitic batholiths as a supply source for heritage construction in the northwest of Madrid. Eng Geol 115:149–157CrossRefGoogle Scholar
  11. Fort R, Varas MJ, Álvarez de Buergo M, Freire D (2011) Determination of anisotropy to enhance the durability of natural stone. J Geophys Eng 8:S132–S144CrossRefGoogle Scholar
  12. Fort R, Alvarez de Buergo M, Perez-Monserrat EM et al (2013a) Evolution in the use of natural building stone in Madrid, Spain. The stone cycle and conservation of monuments. Q J Eng Geol Hydrogeol 46:421–428Google Scholar
  13. Fort R, De Buergo MA, Perez-Monserrat EM (2013b) Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. Int J Rock Mech Min Sci 61:296–305Google Scholar
  14. Fort R, Varas-Muriel MJ, Alvarez de Buergo M, Perez-Monserrat EM (2015) Colmenar limestone, Madrid, Spain: considerations for its nomination as a Global Heritage Stone Resource due to its long term durability. Geol Soc Lond Spec Publ 407:121–135CrossRefGoogle Scholar
  15. Freire-Lista D, Fort R, Varas-Muriel MJ (2015) Alpedrete granite (Spain). A nomination for the “Global Heritage Stone Resource” designation. Episodes 38:106–113Google Scholar
  16. Mamillan M (1991) Methods for assessing the deterioration of stone monuments. In: Science, technology and the European Cultural Heritage. Butterworth-Heinemann, Bologna, pp 90–100Google Scholar
  17. Marini P, Bellopede R, Manfredotti L (2004) About accuracy on ultrasonic measurements on stone. In: The 10th international congress on the deterioration and conservation of stone (ICOMOS). Stockholm, Sweden, pp 659–666Google Scholar
  18. Montoto M, Valdeón L, Côtte P et al (1994) Non-destructive characterization of the state of deterioration of megaliths by ultrasonic tomography: a petrophysical interpretation. In: The 3rd international symposium on the conservation of monuments in the Mediterranean Basin, Venice, pp 3–9Google Scholar
  19. Perez-Monserrat EM, Alvarez de Buergo M, Gomez-Heras M et al (2013) An urban geomonumental route focusingon the petrological and decay features of traditional building stones used in Madrid, Spain. Environ Earth Sci 69:1071–1084CrossRefGoogle Scholar
  20. RILEM (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Commission 25 PEM (Protection et erosion des monuments). Mater Struct 75:175–253Google Scholar
  21. Sokolov SY (1929) On the problem of the propagation of ultrasonic oscillations in various bodies. Elek Nachr Tech 6:454–460Google Scholar
  22. Sokolov SY (1935a) Ultrasonic oscillations and their applications. Tech Phys 2:1–23Google Scholar
  23. Sokolov SY (1935b) Ultrasonic methods of detecting internal flaws in metal articles. Zavod Lab 4:1468–1473Google Scholar
  24. Sokolov SY (1941) Ultrasonic methods of studying the properties of quenched steel and detecting internal flaws in metallic articles. Zh Tekh Fiz 11:160–169Google Scholar
  25. Sokolov SY (1946) The use of ultrasonic oscillations for observing physico-chemical processes. Zh Tekh Fiz 16:784–790Google Scholar
  26. Sokolov SY (1948) The use of ultrasonics in technology and physics. Zavod Lab 11:1328–1335Google Scholar
  27. Svahn H (2006) Final report for the research and development project. Non-destructive field tests in stone conservation. Literature study. Rapport från Riksantikvarieämbetet 2006:3Google Scholar
  28. Vasanelli E, Colangiuli D, Calia A et al (2015) Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 60:33–40CrossRefGoogle Scholar
  29. Vazquez-Calvo C, Varas MJ, Alvarez de Buergo M, Fort R (2010) Limestone on the ‘Don Pedro I’ facade in the Real Alcázar compound, Seville, Spain. Geol Soc Lond Spec Publ 331:171–182CrossRefGoogle Scholar
  30. Weiss T, Rasolofosaon PNJ, Siegesmund S (2002) Ultrasonic wave velocities as a diagnostic tool for the quality assessment of marble. Geol Soc Lond Spec Publ 205:149–164CrossRefGoogle Scholar
  31. Zezza U (1990) Physical-mechanical properties of quarry and building stones. In: Veniale F, Zezza U (eds) Advanced workshop: analytical methodologies for the investigation of damaged stone. Pavia University, PaviaGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Monica Alvarez de Buergo
    • 1
    Email author
  • Rafael Fort Gonzalez
    • 1
  1. 1.Instituto de Geociencias IGEO (CSIC,UCM)MadridSpain

Personalised recommendations