Wireless Communication Platforms for Built and Natural Heritage Monitoring

  • María Inmaculada Martínez-GarridoEmail author
  • Rafael Fort González
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)


This chapter reviews the use of wireless sensor networks in cultural and natural heritage monitoring and describes the platforms presently available on the market. The main characteristics of this technology are discussed in the context of demanding long-term monitoring. The issues addressed include the RF bands, transceiver models, and network topologies most often used, power source and consumption options, and the possible applications of the hardware/software developments for the platforms analyzed. The monitoring capabilities and versatility of each platform are investigated with respect to the sensors that can be installed to track the parameters of interest in heritage studies. End-user network configuration and the research opportunities afforded by this technology in the areas concerned are also highlighted.


Wireless Sensor Network Electrical Resistivity Tomography Defense Advance Research Project Agency Radio Transceiver Defense Advance Research Project Agency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present study was funded under GEOMATERIALES 2 (S2013/MIT-2914), CGL-2011-27902, and BIA2014- 53911-R projects and by the Complutense University of Madrid’s research group on Heritage Stone Material Alteration and Conservation. M.I. Martínez-Garrido participated with the support of the Moncloa Campus of International Excellence (UCM-UPM). The manuscript was edited by Margaret Clark, professional translator and English language science editor.


  1. Abruzzese D, Angelaccio M, Giuliano R, Miccoli L, Vari A (2009) Monitoring and vibration risk assessment in cultural heritage via wireless sensors networkCrossRefGoogle Scholar
  2. Agbota H, Mitchell JE, Odlyha M, Strlic M (2014) Remote assessment of cultural heritage environments with wireless sensor array networks. Sensors 14(5):8779–8793CrossRefGoogle Scholar
  3. Amzucu DM, Li H, Fledderus E (2014) Indoor radio propagation and interference in 2.4 Ghz wireless sensor networks: measurements and analysis. Wirel Pers Commun 76(2):245–269CrossRefGoogle Scholar
  4. ANSI/IEC 60529 (2004) Degrees of protection provided by enclosures (IP code) (Identical National Adoption). National Electrical Manufacturers Association, RosslynGoogle Scholar
  5. Apogee Instruments Inc (2014), Owner’s manual pyranometer model Sp-110 and Sp-230. Available: [01/15, 2015]
  6. Aqeel-Ur-Rehman, Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks’ applications in agriculture. Comput Stand Interfaces 36(2):263–270CrossRefGoogle Scholar
  7. Arduino (2015a) Wireless proto shield. Available: [22/06/2015]
  8. Arduino (2015b) Wireless SD shield. Available: [06/22, 2015]
  9. Arduino (2015c) Arduino Uno. Available: [06/22, 2015]
  10. Arm Ltd (2015) Arm1176 processor. Available: [22/06/2015]
  11. Bencini L, Collodi G, Di Palma D, Manes G, Manes A (2008) An embedded wireless sensor network system for cultural heritage monitoring. 2010 Fourth International Conference on Sensor Technologies and Applications (Sensorcomm) 185–190Google Scholar
  12. Broadcom Corporation (2015) Bcm2835 processor. Available: [22/06/2015]
  13. Chiriac M, Basulto D, Lopez E, Prieto JC, Castillo J, Collado A (2013) The MHS system as an active tool for the preventive conservation of cultural heritageGoogle Scholar
  14. Daponte P, De Vito L, Picariello F, Rapuano S, Tudosa I (2014) Prototype design and experimental evaluation of wireless measurement nodes for road safety. Measurement 57:1–14CrossRefGoogle Scholar
  15. Ferdoush S, Li X (2014) Wireless sensor network system design using raspberry Pi and Arduino for environmental monitoring applications. 9th International Conference on Future Networks and Communications (Fnc’14)/The 11th International Conference on Mobile Systems and Pervasive Computing (Mobispc’14)/Affiliated Workshops, 34, pp 103–110Google Scholar
  16. Freire-Lista DM, Martínez-Garrido M, Fort R (2014) Monitoring techniques for microclimatic analysis in cultural and natural heritage for decay evaluation. 11th International Conference on Non-Destructive Investigations and Microanalymicroanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage Art’14, Madrid, Spain, Isbn: 978–84–697-0522-3. pp Ind 114Google Scholar
  17. Gay D, Levis P, Von Behren R, Welsh M, Brewer E, Culler D (2014) The nesC language: a holistic approach to networked embedded systems. ACM SIGPLAN Not 49(4):41–51CrossRefGoogle Scholar
  18. IEEE® 802.15.4 OEM RF Modules By Maxstream (2007) Product manual V1.Xax – 802.15.4 Protocol For OEM RF Module Part Numbers: Xb24-...-001, Xbp24-...-001. Available: [06/22, 2015]
  19. Ilyas M, Mahgoub I (2004) In: Ilyas M, Mahgoub I (eds) Handbook of sensor networks: compact wireless and wired sensing systems. Crc Press, Boca RatonCrossRefGoogle Scholar
  20. Kochlan M, Micek J (2014). Indoor propagation of 2.4GHz radio signal propagation models and experimental results. 2014 10th International Conference on Digital Technologies (Dt), 125–129Google Scholar
  21. Kompis C, Sureka P (2010) In: Kompis C, Sureka P (eds) Power management technologies to enable remote and wireless sensingGoogle Scholar
  22. Le Cam, V., Lossec, M., Le Maulf, R., Lemarchand, L., Martin, W. And Le Pen, M., 2013. Towards autonomous wireless sensors systems in civil engineering: paving the way to an “energy oriented design method”. Structural health monitoring 2011: Condition-based maintenance and intelligent structures, vol 2. pp 1780–1787Google Scholar
  23. Lehmann F, Krüger M (2011) Wireless impedance measurements to monitor moisture and salt migration in natural stone. Proceedings of the European Workshop on Cultural Heritage Preservation, Berlin, Germany, September 26–28, pp 224–231Google Scholar
  24. Lehmann F, Frick J, Krüger M, Menzel K (2011) Wireless monitoring of moisture content in mineral materials by electrical impedance measurements. In: Büyüköztürk O, Güneş O, Ali Taşdemir M, Akkaya Y (eds) Nondestructive testing of materials and structures: Proceedings of NDTMS-2011, Istambul, Turkey, May 15–18, 2011, Part I. Springer, Istambul, pp 1165–1173Google Scholar
  25. Lehmann F, Martínez Garrido MI, Krüger M (2013) On the Advance of Impedance Measurements for Monitoring Moisture in Sandstone. In: Troi A, Lucci E (eds) Cultural heritage preservation, 3rd European workshop on cultural heritage preservation. Bozen, pp 259–264Google Scholar
  26. Libelium Comunicaciones Distribuidas S.L. (2015) Waspmote datasheet. Available: [01/12, 2015]
  27. Martínez Garrido MI (2015) Aportación de la monitorización mediante redes de sensores y técnicas no invasivas para la conservación preventiva del Patrimonio [PhD. Thesis], School of Telecommunications Engineering (ETSIST), Technical University Of Madrid, Spain, 440ppGoogle Scholar
  28. Martínez-Garrido MI, Fort R (2014a) Sensing technologies for monitoring and conservation of cultural heritage: wireless detection of decay factors. In: Rogerio-Candeleda MA (ed) Science, technology and cultural heritage. CRC Press, Balkema, pp 495–501Google Scholar
  29. Martínez-Garrido MI, Fort R (2014b) Wireless sensor networks for a conservation monitoring in archaeological sites. In: Macchia A, Prestileo F, Cagno S (eds) Yococu 2014: professionals’ experiences in cultural heritage conservation in America, Europe, and Asia. Cambridge Scholars Publishing Publicado, pp 256–268. isbn:9781443889766Google Scholar
  30. Martínez Garrido MI, Fort R (2016a) Wireless monitoring for decay factors’ detection in cultural and natural heritage scenarios In Spain. Sensing the past: geoscience and sensing technologies for cultural heritage. Chapter 27, SpringerGoogle Scholar
  31. Martínez-Garrido MI, Fort R (2016b) Experimental assessment of a wireless communications platform for the built and natural heritage. Measurement 82:188–201CrossRefGoogle Scholar
  32. Martinez-Garrido MI, Aparicio S, Fort R, Izquierdo MAG, Anaya JJ (2013) Decay assessment through wireless sensor networks implementation for architectural heritage conservation. In: Rogeriocandelera, Ma Lazzari, M Cano E (eds) Science, technology and cultural heritage. 6000 Broken Sound Parkway Nw, Ste 300, Boca Raton, Fl 33487–2742 USA: CRC Press, pp 71–74Google Scholar
  33. Martínez-Garrido MI, Aparicio S, Fort R, Anaya JJ, Izquierdo MAG (2014a) Effect of solar radiation and humidity on the inner core of walls in historic buildings. Constr Build Mater 51(51):383–394CrossRefGoogle Scholar
  34. Martínez Garrido MI, Gómez Heras M, Fort R, Varas Muriel MJ (2014b) Monitoring moisture distribution on stone and masonry walls. In: Rogerio-Candeleda MA (ed) Science, technology and cultural hetitage for the conservation of cultural heritage. CRC Press, Balkema, pp 35–40Google Scholar
  35. Martínez-Garrido MI, Fort R (2017) Wireless monitoring to detect decay factors in natural heritage scenarios in Spain: a case study at Lanzarote. In: Masini N, Soldovieri F (eds) Sensing the past. Geotechnol Environ 16. doi:10.1007/978-3-319-50518-3_24Google Scholar
  36. Mecocci A, Abrardo A (2014) Monitoring architectural heritage by wireless sensors networks: san gimignano – a case study. Sensors 14(1):770–778CrossRefGoogle Scholar
  37. Memsic Inc. (2015a) Document part number: 6020-0124-01 Rev B. Available: [06/22, 2015]
  38. Memsic Inc. (2015b) Memsic wireless sensor nodes. Available: [23/06/2015]
  39. Paoli R, Fernandez-Luque FJ, Domenech G, Martinez F, Zapata J, Ruiz R (2012) A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote. Expert Syst Appl 39(5):5566–5575CrossRefGoogle Scholar
  40. Rodriguez-Sanchez MC, Borromeo S, Hernandez-Tamames JA (2011) Wireless sensor networks for conservation and monitoring cultural assets. IEEE Sensors J 11(6):1382–1389CrossRefGoogle Scholar
  41. Sensirion (2014) Datasheet SHT25. Humidity and temperature sensor. Sensirion. Version 3. Available: [26/01/2017]
  42. Severance C (2014) Massimo Banzi: building arduino. Computer 47(1):11–12CrossRefGoogle Scholar
  43. Sileo M, Biscione M, Gizzi FT, Masini N, Martinez-Garrido MI (2014) Low cost strategies for the environmental monitoring of cultural heritage: preliminary data from the Crypt of St. Francesco D’assisi, Irsina (Basilicata, Southern Italy). In: Rogerio-Candeleda MA (ed) Science, technology and cultural heritage. CRC Press, Balkema, pp 27–34Google Scholar
  44. Silva JFMC, Gomes RC, Nascimento AOF, Menezes JWM, Silva FD, Alves LEB (2012) Building a node for wireless sensor network based on open source plataform arduino. 2012 Brazilian Symposium On Computing System Engineering (Sbesc 2012), pp 224–224Google Scholar
  45. Smartmote Monitoring And Testing (2015) [06/22, 2015]
  46. Solahuddin YF, Ismail W (2014) Data fusion for reducing power consumption in Arduino-Xbee wireless sensor network platform. 2014 International Conference on Computer and Information Sciences (Iccoins)Google Scholar
  47. Spadacini M, Savazzi S, Nicoli M (2014) Wireless home automation networks for indoor surveillance: technologies and experiments. EURASIP J Wirel Commun Netw 6:1–17Google Scholar
  48. SST Sensing Ltd (2015) CO2S-A ambient range CO2 sensor. Available: [05/21, 2015]
  49. Texas Instruments Incorporated, 02/10/2014 Rev. Diciembre 2007, 2007-Last Update, CC2520 Datasheet 2.4 GHZ IEEE 802.15.4/Zigbee RF transceiver. Available: [01/15, 2015]
  50. Thies Clima (2015) Anemometer. Available: [01/15, 2015]
  51. Turner JSC, Ramli MF, Kamarudin LM, Zakaria A, Shakaff AYM, Ndzi DL, Nor CM, Hassan N, Mamduh SM (2013) The study of human movement effect on signal strength for indoor WSN deployment. 2013 IEEE Conference on Wireless Sensor (Icwise) 30–35Google Scholar
  52. Varas-Muriel MJ, Fort R, Martínez-Garrido MI, Zornoza-Indart A, López-Arce P (2014a) Fluctuations in the indoor environment in Spanish rural churches and their effects on heritage conservation: hygro-thermal and co2 conditions monitoring. Build Environ 82:97–109CrossRefGoogle Scholar
  53. Varas-Muriel MJ, Martínez-Garrido MI, Fort R (2014b) Monitoring the thermal–hygrometric conditions induced by traditional heating systems in a historic Spanish church (12th–16th C). Energ Buildings 75:119–132CrossRefGoogle Scholar
  54. Webster JG, Eren H (2014) In: Webster JG, Eren H (eds) Measurement, instrumentation, and sensors handbook, second edition: electromagnetic, optical, radiation, chemical, and biomedical measurement. CRC Press, Boca RatonCrossRefGoogle Scholar
  55. Yildirim U, Oguz O, Bogdanovic N (2013) A prediction-error-based method for data transmission and damage detection in wireless sensor networks for structural health monitoring. J Vib Control 19(15):2244–2254CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • María Inmaculada Martínez-Garrido
    • 1
    Email author
  • Rafael Fort González
    • 2
  1. 1.Instituto de Geociencias (CSIC-UCM) and Departamento de Ingeniería Telemática y Electrónica (ETSIST, UPM)CEI Campus Moncloa (CSIC, UPM-UCM)MadridSpain
  2. 2.Instituto de Geociencias (CSIC, UCM)CEI Campus Moncloa (CSIC,UPM,UCM)28040, MadridSpain

Personalised recommendations