Advertisement

FF-XRF, XRD, and PIXE for the Nondestructive Investigation of Archaeological Pigments

  • Francesco Paolo RomanoEmail author
  • Lighea Pappalardo
  • Giacomo Biondi
  • Claudia Caliri
  • Nicola Masini
  • Francesca Rizzo
  • Hellen Cristine Santos
Chapter
  • 928 Downloads
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)

Abstract

This chapter discusses the integration of particle-induced X-ray emission (PIXE), full-field X-ray fluorescence (FF-XRF), and X-ray diffraction (XRD) for the analysis of archaeological pigments. It summarizes the research activity performed for developing these innovative, custom-built, and portable instruments. A novel analytical protocol has been developed by combining these techniques with the aim of performing an in situ quantitative characterization of painted materials. The potentiality of using this approach is demonstrated for manganese black used in archaeological pottery manufactured over time by different cultures.

Keywords

Cultural heritage Pigments FF-XRD PIXE XRD 

References

  1. Dran JC, Salomon J, Calligaro T, Walter P (2004) Ion beam analysis of art works: 14 years of use in the Louvre. Nucl Instrum Methods Phys Res Sect B 219–220:7–15CrossRefGoogle Scholar
  2. Gianoncelli A, Castaing J, Ortega L, Dooryhe E, Salomon J, Walter P, Hodeau JL, Bordet P (2008) A portable instrument for in situ determination of the chemical and phase compositions of cultural heritage objects. X-Ray Spectrom 37:418–423CrossRefGoogle Scholar
  3. Govindaraju K (1994) Compilation of working values and description for 383 geostandards. Geostand Newslett 18:1–158CrossRefGoogle Scholar
  4. Jenkins R, Snyder R, John Wiley & Sons (eds) (1996) Introduction to X-Ray powder diffractometry. John Wiley & Sons, New YorkGoogle Scholar
  5. Johansson SAE, Campbell JL, Malmqvist KG (1995) Particle-induced X-Ray emission spectrometry (PIXE). 133 in chemical analysis: a series of monographs on analytical chemistry and its applications (JD Winefordner, Series Editor). Wiley, New YorkGoogle Scholar
  6. Lasaponara R, Masini N, Orefici G (Eds) (2016) The ancient Nasca world: new insights from science and archaeology, Springer International PublishingGoogle Scholar
  7. Mandò PA (2005) Nuclear physics and archaeometry. Nucl Phys A 751:393–408CrossRefGoogle Scholar
  8. Maniatis Y, Aloupi E, Stalios AD (1993) New evidence for the nature of the attic black gloss. Archaeometry 35:23–24CrossRefGoogle Scholar
  9. Pappalardo G, de Sanoit J, Musumarra A, Calvi G, Marchetta C (1996) Feasibility study of a portable PIXE system using a 210Po alpha source. Nucl Instrum Methods Phys Res Sect B 109–110:214–217Google Scholar
  10. Pappalardo L (1999) A portable PIXE system for the in situ characterisation of black and red pigments in neolithic, copper age and bronge age pottery. Nucl Instr Methods Phys Res Sect B 109–110:214–217Google Scholar
  11. Pappalardo L, Romano FP, Garraffo S, de Sanoit J, Marchetta C, Pappalardo G (2003) The improved LNS PIXE-alpha portable system: archaeometric applications. Archaeometry 45:333–339CrossRefGoogle Scholar
  12. Pappalardo L, de Sanoit J, Marchetta C, Pappalardo G, Romano FP, Rizzo F (2007) A portable spectrometer for simultaneous PIXE and XRF analysis. X-Ray Spectrom 36:310–315CrossRefGoogle Scholar
  13. Pappalardo L, Alberti R, Calì C, Garraffo S, Litrico P, Pappalardo G, Rizzo F, Romano FP (2013) The new PIXE-alpha spectrometer for the analysis of Roman nummi surface. X-Ray Spectrom 42(1):33–37CrossRefGoogle Scholar
  14. Pappalardo L, La Rosa V, Rizzo F, Romano FP (2015) Non destructive PIXE-alpha characterization of pigments in Kamares pottery (1850–1700 B. C.) from Phaistos (Crete). X-Ray Spectrom 44(4):276–281CrossRefGoogle Scholar
  15. Pappalardo L, Barresi S, Biondi G, Caliri C, Caruso F, Catalano R, Lamagna G, Manenti GA, Monterosso G, Orlando A, Rizzo F, Romano FP, Santos HC (2016a) PIXE-alpha non-destructive and in situ compositional investigation of black gloss on ancient pottery. X-Ray Spectrom 45:258. doi: 10.1002/xrs.2696 CrossRefGoogle Scholar
  16. Pappalardo L, Masini N, Rizzo F, Romano FP (2016b) The polychromy of Nasca pottery: a nondestructive analytical approach for compositional and mineralogical investigation of pigments. In: Lasaponara R, Masini N, Orefici G (eds) The ancient Nasca world: new insights from science and archaeology. Springer International Publishing, pp 593–603. doi: 10.1007/978-3-319-47052-8_24 CrossRefGoogle Scholar
  17. Picciome P, Copat V, Costa A (2011) Castelluccio painted pottery. Traces in Times 1:1–18Google Scholar
  18. Pollard MA, Heron C (eds) (2008) Archeological chemistry. RSC Publishing, CambridgeGoogle Scholar
  19. Romano FP, Calvi G, Furia E, Garraffo S, Marchetta C, Pappalardo G (2005) A new portable XRF spectrometer with beam stability control. X-Ray Spectrom 34:135–139CrossRefGoogle Scholar
  20. Romano FP, Pappalardo G, Pappalardo L, Rizzo F (2006) The new version of the portable XRD system of the LANDIS laboratory and its application for the non destructive characterisation of pigments in ancient Roman frescoes. Il Nuovo Cimento B 121:881Google Scholar
  21. Romano FP, Pappalardo L, Masini N, Pappalardo G, Rizzo F (2011) The compositional and mineralogical analysis of fired pigments in Nasca pottery from Cahuachi (Peru) by the combined use of the portable PIXE-alpha and portable XRD techniques. Microchem J 99:449–453CrossRefGoogle Scholar
  22. Romano FP, Pappalardo L, Calvi G, Costa E, Marchetta C, Pappalardo G, Rizzo F, Russo S (2012) A new version of a portable polonium source for the non-destructive PIXE (particle induced X-ray emission) analysis in the cultural heritage field. Microchem J 101:95–98CrossRefGoogle Scholar
  23. Romano F, Altana C, Cosentino L, Celona L, Gammino S, Mascali D (2013) A new x-ray pinhole camera for energy dispersive x-ray fluorescence imaging with high-energy and high-spatial resolution. Spectrochim Acta B 86:60–65CrossRefGoogle Scholar
  24. Romano FP, Caliri C, Cosentino L, Gammino S, Giuntini L, Mascali D, Neri L, Pappalardo L, Rizzo F, Taccetti F (2014) Macro and micro full field X-Ray fluorescence with an X-Ray pinhole camera presenting high energy and high spatial resolution. Anal Chem 86:10892–10899CrossRefGoogle Scholar
  25. Schweizer F, Rinuy A (1982) Manganese black as an etruscan pigment. Stud Conserv 27:118–123Google Scholar
  26. Silverman H, Proulx DA (eds) (2002) The Nasca. Blackwell, LondonGoogle Scholar
  27. Uda M, Ishizaki A, Satoh R, Okada K, Nakajima Y, Yamashita D, Ohashi K, Sakuraba Y, Shimono A, Kojima D (2005) Portable X-ray diffractometer equipped with XRF for archaeometry. Nucl Inst Methods Phys Res B 239:77CrossRefGoogle Scholar
  28. Vaughn K, Conlee C, Neff H, Schreiber K (2005) A compositional analysis of Nasca pigments: implications for craft production on the prehispanic South Coast of Peru. In: Speakman RJ, Neff H (eds) Laser Ablation ICP-MS: a new frontier in archaeological characterization studies, pp 139–153Google Scholar
  29. Verma HR (ed) (2007) X-ray fluorescence (XRF) and particle-induced X-ray emission (PIXE): atomic and nuclear analytical methods. Springer, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francesco Paolo Romano
    • 1
    Email author
  • Lighea Pappalardo
    • 1
  • Giacomo Biondi
    • 1
  • Claudia Caliri
    • 3
  • Nicola Masini
    • 2
  • Francesca Rizzo
    • 3
  • Hellen Cristine Santos
    • 3
  1. 1.IBAM-CNRCataniaItaly
  2. 2.CNR-IBAM Institute for Archaeological and Monumental HeritageTito ScaloItaly
  3. 3.LNS-INFNCataniaItaly

Personalised recommendations