Terahertz Waves and Cultural Heritage: State-of-the-Art and Perspectives

  • Ilaria CatapanoEmail author
  • Marcello Picollo
  • Kaori Fukunaga
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)


Noninvasive diagnostic technologies capable of gathering information on materials and the state of preservation of works of art are crucial to help conservators, archaeologists, and anthropologists plan and carry out their tasks properly. Among these technologies, those operating in the terahertz (THz) frequency range are among the newest and are deserving great attention as they allow both high-resolution imaging and material identification. A synthetic snapshot of the development today of THz spectroscopy and imaging is provided in this chapter together with practical examples assessing the advantages offered in the framework of cultural heritage surveys.


Noninvasive diagnostics Spectroscopy THz waves Time-of-flight imaging 


  1. Catapano I, Soldovieri F (2015) THz imaging and spectroscopy: first experiments and preliminary results. In: Proceedings of 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 7–10 July 2015, 4 ppGoogle Scholar
  2. Chan WL, Deibel J, Mittleman DM (2007) Imaging with terahertz radiation. Rep Prog Phys 70:1325–1379CrossRefGoogle Scholar
  3. Fukunaga K (2008) Terahertz spectral database: construction of open terahertz spectral database. J Nat Inst Inf Commun Technol 55:61–66Google Scholar
  4. Fukunaga K, Hosako I (2010) Innovative non-invasive analysis techniques for cultural heritage using terahertz technology. C R Phys 11:519–526CrossRefGoogle Scholar
  5. Fukunaga K, Picollo M (2010) Terahertz spectroscopy applied to the analysis of artists’ materials. Appl Phys A Mater Sci Process 100:591–597CrossRefGoogle Scholar
  6. Gettens RJ, Stout GL (1966) Painting materials, a short encyclopedia. Dover Publication Inc., New YorkGoogle Scholar
  7. Gowen AA, O’Sullivan C, O’Donnell CP (2012) Terahertz time domain spectroscopy and imaging: emerging techniques for food process and quality control. Trends Food Sci Technol 25:40–46CrossRefGoogle Scholar
  8. Herrmann M, Tani M, Sakai K (2000) Display modes in time-resolved terahertz imaging. Jpn J Appl Phys 39:6254–6258CrossRefGoogle Scholar
  9. Hu BB, Nuss MC (1995) Imaging with THz waves. Opt Lett 20:1716–1719CrossRefGoogle Scholar
  10. Jackson JB, Bowen J, Walker G, Labaune J, Mourou G, Menu M, Fukunaga K (2011) A survey of terahertz applications in cultural heritage conservation science. IEEE Trans Terahertz Sci Technol 1:220–231CrossRefGoogle Scholar
  11. Jepsen PU, Cooke DG, Koch M (2011) Terahertz spectroscopy and imaging – modern techniques and applications. Laser Photonics Rev 5:124–166CrossRefGoogle Scholar
  12. Joseph CS, Patel R, Neel VA, Giles RH, Yaroslavsky AN (2014) Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions. J Biophotonics 7:295–303CrossRefGoogle Scholar
  13. Karr C Jr, Kovach JJ (1969) Far-infrared spectroscopy of minerals and inorganics. Appl Spectrosc 23:219–223CrossRefGoogle Scholar
  14. Kawase K, Ogawa Y, Watanabe Y (2003) Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 11:2549–2554CrossRefGoogle Scholar
  15. Nuss MC, Orenstein J (1997) Terahertz Time-Domain spectroscopy (THz-TDS). In: Gruener G (ed) Millimeter-wave spectroscopy of solids. Springer-Verlag, HeidelbergGoogle Scholar
  16. Peiponen K-E, Kuwata-Gonokami M, Axel Zeitler J (eds) (2013) Terahertz spectroscopy and imaging. Springer-Verlag, Berlin/Heidelberg, pp 451–489Google Scholar
  17. Perenzoni M, Paul DJ (2014) Physics and applications of Terahertz radiation, Springer Series in Optical Sciences, vol 173. Springer, DordrechtCrossRefGoogle Scholar
  18. Picollo M, Fukunaga K, Labaune J (2015) Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system. J Cult Herit 16:73–80CrossRefGoogle Scholar
  19. Qin J, Ying Y, Xie L (2013) The detection of agricultural products and food using terahertz spectroscopy: a review. Appl Spectrosc Rev 48:439–457CrossRefGoogle Scholar
  20. Rutz F, Koch M, Khare S, Moneke M, Richter H, Ewert U (2006) Terahertz quality control of polymeric products. Int J Infrared Millimeter Waves 27:547–556CrossRefGoogle Scholar
  21. Saeedkia D (ed) (2013) Handbook of Terahertz technology for imaging, sensing and communications. Woodhead Publishing, OxfordGoogle Scholar
  22. Shen YC, Lo T, Taday PF, Cole BE, Tribe WR, Kemp MC (2005) Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl Phys Lett 86:3ppGoogle Scholar
  23. Song H-J, Nagatsuma T (eds) (2015) Handbook of Terahertz technologies; devices and applications. Pan Stanford, SingaporeGoogle Scholar
  24. Tonouchi M (2009) Galore new applications of terahertz science and technology. Terahertz Sci Technol 2:90–101Google Scholar
  25. van Exter M, Fattinger C, Grischkowsky D (1989) Terahertz time-domain spectroscopy of water vapour. Opt Lett 14:1128–1130CrossRefGoogle Scholar
  26. Yasui T, Yasuda T, Sawanaka K, Araki T (2005) Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt 44:6849–6856CrossRefGoogle Scholar
  27. Yu C, Fan S, Sun Y, Pickwell-MacPherson E (2012) The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant Imaging Med Surg 2:33–45Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ilaria Catapano
    • 1
    Email author
  • Marcello Picollo
    • 2
  • Kaori Fukunaga
    • 3
  1. 1.Institute for Electromagnetic Sensing of the EnvironmentNational Research Council of Italy (IREA-CNR)NaplesItaly
  2. 2.Nello Carrara Institute of Applied PhysicsNational Research Council of Italy (IFAC-CNR)FlorenceItaly
  3. 3.Applied Electromagnetic Research CenterNational Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations