Advertisement

Geomagnetometry for Archaeology

  • M. FediEmail author
  • F. Cella
  • G. Florio
  • M. La Manna
  • V. Paoletti
Chapter
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 16)

Abstract

In past decades, magnetic surveying had become popular as one of the most effective techniques supporting archaeological prospecting. This is possible because the existence of susceptibility contrasts between the cover soil and several buried finds often causes detectable anomalies. More recently, great advances were made in signal enhancement and boundary analysis of potential field anomalies, thanks to methods allowing a suitable differentiation of the field without making the process unstable. New three-dimensional (3D) imaging techniques provided an estimate of the magnetization distribution within the subsoil by means of high-resolution images of the source distribution. Most of these methods are fast and reliable in the presence of shallow and compact sources, just as in the case of the sources usually occurring in archaeological prospecting. Nevertheless, great effort was spent by the scientific community to overcome serious problems causing low signal-to-noise ratio in the measurements. This chapter provides a step-by-step description of technical solutions adopted to improve the quality of data and to perform a better interpretation of the magnetic anomalies usually associated to the presence of archaeological finds. To this end, a summary of case histories is illustrated giving a general framework of the latest progress in archaeo-magnetism.

Keywords

Global Position System Magnetic Anomaly Automatic Gain Control Magnetic Gradient Upward Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aitken MJ (1958) Magnetic prospecting. I. The Water Newton survey. Archaeometry 1:24–26CrossRefGoogle Scholar
  2. Arnold JB III (1996) Magnetometer survey of La Salle’s ship the Belle. The International Journal of Nautical Archaeology 25:243–249CrossRefGoogle Scholar
  3. Asandulesei A (2011) Geophysical Prospecting Techniques Used in archaeology magnetometry. In: Studia antiqua et archaeologica, XVII, Editura Universității Alexandru Ioan Cuza, Iaşi, 5–17Google Scholar
  4. Baniamerian J, Fedi M, Oskooi B (2016) Compact depth from extreme points: a tool for fastpotential field imaging. Geophys Prospect 64:1386–1398. doi:0.1111/1365-2478.12365Google Scholar
  5. Baranov W (1975) Potential fields and their transformation in applied geophysics, pp 1–72. Geoexploration monograph series, vol 6, 121 pp, Gebruder Borntraeger, Stuttgart, GermanyGoogle Scholar
  6. Blakely JR, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7)Google Scholar
  7. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Boyce JI, Reinhardt EG, Raban A, Pozza MR (2004) Marine magnetic survey of a submerged Roman Harbour, Caesarea Maritima, Israel. Int J Nautic Archaeol 33:122–136CrossRefGoogle Scholar
  9. Cella F, Fedi M, Florio G (2009) Toward a full multiscale approach to interpret potential fields. Geophysical Prospecting 57:543–557CrossRefGoogle Scholar
  10. Cella F, Paoletti V, Florio G, Fedi M (2015) Characterizing elements of urban planning in Magna Graecia using geophysical techniques: the case of Tirena (Southern Italy). Archaeol Prospect 22:207–219CrossRefGoogle Scholar
  11. Cella F, Fedi M (2015) High-resolution geophysical 3D imaging for archaeology by magnetic and EM data: the case of the iron age settlement of Torre Galli, Southern Italy. Surv Geophys 36:831–850. doi: 10.1007/s10712-015-9341-3 CrossRefGoogle Scholar
  12. Cicala L, Grifa C, Franciosi L, Langella A, Germinario C, Morra V, (2013) Pottery production from Pian della Tirena, NoceraTerinese (Cz). Archaeometry: comparing experiences, Naus EditoriaGoogle Scholar
  13. Ciminale M, Loddo M (2001) Aspects of magnetic data processing. Archaeol Prospect 8:239–246CrossRefGoogle Scholar
  14. Clark A (1990) Seeing beneath the soil. Batsford, LondonGoogle Scholar
  15. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591CrossRefGoogle Scholar
  16. Cordell L., Grauch V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze WJ (ed) The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysicists, Tulsa, pp 181–197Google Scholar
  17. Eder-Hinterleitner A, Neubauer W, Melichar P (1996) Restoring magnetic Anomalies. Archaeol Prospect 3:185–197CrossRefGoogle Scholar
  18. Fassbinder JWE, Stanjek H (1993) Occurrence of bacterial magnetite in soils from archaeological sites. Archaeologia Polona 31:117–128Google Scholar
  19. Fedi M, Florio G (2001) Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys Prospect 49:40–58CrossRefGoogle Scholar
  20. Fedi M (2002) Multiscale derivative analysis: a new tool to enhance detection of gravity source boundaries at various scales. Geophys Res Lett 29(2):1029, 16–1/16–4Google Scholar
  21. Fedi M, Florio G (2003) Decorrugation and removal of directional trends of magnetic fields by the wavelet transform: application to archeological areas. Geophys Prospect 51(4):261–272CrossRefGoogle Scholar
  22. Fedi M (2007) DEXP: a fast method to determine the depth and the structural index of potential field sources. Geophysics 72(1):I1–I11.Google Scholar
  23. Fedi M, Pilkington M (2012) Understanding imaging methods for potential field data. Geophysics 77(1):G13–G24
  24. Fedi M, Quarta T (1998) Wavelet analysis for the regional-residual and local separation of potential field anomalies. Geophys Prospect 46(5):507–525CrossRefGoogle Scholar
  25. Florio G, Fedi M, Pasteka R (2014) On the estimation of the structural index from low-pass filtered magnetic data. Geophysics 79(6):J67–J80CrossRefGoogle Scholar
  26. Gaffney C (2008) Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology. Archaeometry 50:313–336CrossRefGoogle Scholar
  27. Gibson T (1986) Magnetic prospection on prehistoric sites in western Canada. Geophysics 51:553–560CrossRefGoogle Scholar
  28. Jeng Y, Lee YL, Chen CY, Lin MJ (2003) Integrated signal enhancements in magnetic investigation in archaeology. J Appl Geophys 53:31–48CrossRefGoogle Scholar
  29. Hsu S, Coppens D, Shyu C (1998) Depth to magnetic source using the generalized analytic signal. Geophysics 63:1947–1957CrossRefGoogle Scholar
  30. Iglewicz B, Hoaglin DC (1993) How to detect and handle outliers. ASQ Press, MilwaukeeGoogle Scholar
  31. Larson DO, Lipo CP, Ambos EL (2003) Application of advanced geophysical methods and engineering principles in an emerging scientific archaeology. First Break 21:51–62Google Scholar
  32. Linford NT (2006) The application of geophysical methods to archaeological prospection. Rep Prog Phys 69:2205–2257CrossRefGoogle Scholar
  33. Maher BA, Taylor RM (1988) Formation of ultrafine-grained magnetite in soils. Nature 336(6197):368–370CrossRefGoogle Scholar
  34. Maniscalco F, Severino N (2002) Recenti ipotesi sulla conformazione del Lacus Baianus, Ostraka. Rivista di Antichità 11(1):167–176Google Scholar
  35. Milligan P, Rajagopalan S (1995) Image enhancement of aeromagnetic data using automatic gain control. Explorat Geophys 25(4):173–178Google Scholar
  36. Nabighian MN (1984) Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49:780–786Google Scholar
  37. Nabighian MN, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Peirce JW, Phillips JD, Ruder ME, (2005) The historical development of the magnetic method in exploration. Geophysics 70:33ND–61NDGoogle Scholar
  38. Orsi P (2004) Le necropoli preelleniche calabresi. Torre Galli, Canale, Ianchina, Patariti. FPE-Franco Pancallo Ed., ISBN 8864561323, 9788864561325 (in Italian)Google Scholar
  39. Pacciarelli M (1999) Torre Galli. La necropoli della prima età del ferro (scavi di Paolo Orsi 1922–23). Rubbettino Ed., Iraceb., ISBN 8872847257 (in Italian)Google Scholar
  40. Paoletti V, Secomandi M, Piromallo M, Giordano F, Fedi M, Rapolla A (2005) Magnetic survey at the submerged archaeological site of Baia, Naples, Southern Italy. Archaeol Prospect 12(1):51–59CrossRefGoogle Scholar
  41. Paoletti V, Fedi M, Florio G, Rapolla A (2007) Localized cultural de-noising of high-resolution aeromagnetic data. Geophys Prospect 55:412–432CrossRefGoogle Scholar
  42. Pappalardo U, Russo F (2001) Il bradisismo dei Campi Flegrei (Campania): dati geomorfologicied evidenze archeologiche. In Forma Maris, eds. Gianfrotta P.A., Maniscalco F. Forum Internazionale di Archeologia Subacquea, Pozzuoli(Naples), September 22–24, 1998. Massa Editore, Napoli, 107–129 (in Italian).Google Scholar
  43. Piro S, Sambuelli L, Godio A, Taormina R (2007) Beyond image analysis in processing archaeomagnetic geophysical data: case studies of chamber tombs with dromos. Near Surface Geophys 5(6):405–414Google Scholar
  44. Quinn R, Bull JM, Dix JK, Adams JR (1997) The Mary Rose site – geophysical evidence for palaeo-scour marks. Int J Naut Archaeol 26:3–16Google Scholar
  45. Quinn R, Breen C, Forsythe W, Barton K, Rooney S, O’Hara D (2002) Integrated geophysical surveys of the French Frigate La Surveillante (1797), Bantry Bay, Co. Cork, Ireland. J Archaeol Sci 29:413–422Google Scholar
  46. Roest WR, Verhoef J, Pilkington M, (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57:116–125Google Scholar
  47. Rosner B (1983) Percentage points for a generalised ESD many-outlier procedure. Technometrics 25:165–172CrossRefGoogle Scholar
  48. Scognamiglio E (1993) Il rilievo di Baia sommersa. Note tecniche e osservazioni. Archeologia Subacquea. Studi, ricerche e documenti I:65–70 (in Italian)Google Scholar
  49. Smekalova T, Abrahamsen N, Voss O (1996) Magnetic investigation of a Roman/Early Germanic Iron Age iron-smelting center at Snorup, Denmark. In: Proceedings of the sixth Nordic conference on the application of scientific methods in archaeology 1993. ArkæologiskeRapporter No. 1, Esbjerg Museum, pp 227–245Google Scholar
  50. Stampolidis A, Tsokas GN (2012) Use of edge delineating methods in interpreting magnetic archaeological prospection data. Archaeol Prospect. 19(2):123–140Google Scholar
  51. Sternberg RS (1987) Archaeomagnetism and magnetic anomalies in the American Southwest. Geophysics 52:368–371CrossRefGoogle Scholar
  52. Scollar I, Tabbagh A, Hesse A, Herzog I (1990) Archaeological prospecting and remote sensing. Cambridge University Press, CambridgeGoogle Scholar
  53. Stavrev P, Gerovska D (2000) Magnetic field transforms with low sensitivity to the direction of source magnetization and high. Geophys Prospect 48:317–340CrossRefGoogle Scholar
  54. Tabbagh J (1999) Filtrage numérique des donnes géophysiques. In: Pasquinucci M, Trément F (eds) Non-destructive techniques applied to landscape archaeology. Oxbow Books, OxfordGoogle Scholar
  55. Tocco Sciarelli G (1983) Baia, inquadramento storico e topografico. In: Baia—il Ninfeo Imperiale sommerso di Punta Epitaffio. Edizione Banca Sannitica, Naples, pp 17–24 (in Italian)Google Scholar
  56. Verduzco B, Fairhead JD, Green CM, Mackenzie C (2004) New insights into magnetic derivatives. The Leading Edge 22:116–119CrossRefGoogle Scholar
  57. Weymouth JW (1986) Archaeological site surveying program at the University of Nebraska. Geophysics 51:538–552CrossRefGoogle Scholar
  58. Wynn JC (1986) Archaeological prospection: an introduction to the special issue. Geophysics 51:533–537CrossRefGoogle Scholar
  59. Wijns C, Perez C, Kowalczyk P (2005) Theta map: edge detection in magnetic data. Geophysics 70:39–43CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Fedi
    • 1
    Email author
  • F. Cella
    • 2
  • G. Florio
    • 1
  • M. La Manna
    • 3
  • V. Paoletti
    • 1
  1. 1.Dipartimento di Scienze della Terra, dell’Ambiente e delle RisorseUniversità di Napoli Federico IINaplesItaly
  2. 2.Dipartimento di Biologia, Ecologia e Scienze della TerraUniversità della CalabriaRendeItaly
  3. 3.INNOVA SCARLPozzuoliItaly

Personalised recommendations