Skip to main content

Ice-Templating: Processing Routes, Architectures, and Microstructures

  • Chapter
  • First Online:
Freezing Colloids: Observations, Principles, Control, and Use

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

This chapter concentrates on materials science studies and applications of freezing colloids. Both porous and dense materials are obtained by freezing colloids; processes called ice-templating or freeze-casting in materials science. After a brief history of how the idea of ice-templating emerged after the initial observations of freezing-induced segregation more than a century ago, this chapter describes the processing routes developed to date. In particular, the combination of traditional materials processing routes with freezing provides materials with unique architectures and microstructures. The third section of the chapter presents the architectures and microstructures of ice-templated materials. As most of the freezing routes have been developed to obtain porous materials, we then go into details in the characteristics of the porosity at multiple levels, from macropores to meso- and micropores, as well as the different architectures obtained by freezing routes, including aerogels, fibres, or microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Working on freezing was difficult at the beginning of the \(20^{th}\) century. Because of the absence of cooling devices, scientists had to rely on low temperatures encountered in winter. Taber performed a first series of observations at night, during the winter of 1914/1915. The following winter were apparently not cold enough for his freezing experiments, and he gave up on the investigations for 12 years, until he had access to a freezing device in his lab:

    Experiments carried out by me on cold nights during the winter of 1914–15 indicated that the pressure effects [...]. After publishing brief descriptions of some of these experiments together with certain conclusions, I laid the investigation aside temporarily, because of the lack of facilities for obtaining and maintaining low temperatures. In March 1927, suitable low-temperature apparatus was placed at my disposal [...] and I began an investigation to determine the factor involved in excessive and in differential frost heaving.

  2. 2.

    See p. 135 and after.

  3. 3.

    Starting from the same observations, Halberstadt and Henisch hypothesised a few years later [8] that “since there is no visible shrinkage [upon freeze drying], it is reasonable to assume that the gel structure remains intact”. This assumption turned out to be wrong. The gel structure was modified locally by the growth of the crystals, even if the overall dimensions of the sample remained the same.

  4. 4.

    See p. 154 for the mechanisms.

  5. 5.

    See p. 400.

  6. 6.

    See p. 400.

  7. 7.

    See p. 112 and p. 114.

  8. 8.

    See p. 386.

  9. 9.

    See p. 387.

  10. 10.

    These investigations were ground-based. The antenna used to measure the impulse reflections were placed 1 m above the ground .

  11. 11.

    See p. 389 and after.

  12. 12.

    See p. 365.

  13. 13.

    See p. 447.

  14. 14.

    These aspects are discussed p. 111.

  15. 15.

    P123 was also used obtained mesoporosity in titania [238]. Little indications are nevertheless given about the processing conditions, or the deliberate intentions to obtain micelles before or during freezing. The final product is a powder, not a bulk sample.

  16. 16.

    Given p. 448 (Chap. 7).

  17. 17.

    Of course, they did not refer to the process as freeze-casting or ice-templating at that time. They mentioned that the fibres are “occasionally branched, and seem to be the remnants of the ridged flakes where the interconnections between ridges have thinned to the vanishing point”. The figure of the flakes (Fig. 3 of the paper) is typical of what we would call today ice-templated silica.

  18. 18.

    The estimated cooling rate is \(10^4~\mathrm{K}\cdot \mathrm{s}^{-1}\), and is thus still lower than the cooling rate required to vitrify water (\(10^6~\mathrm{K}\cdot \mathrm{s}^{-1}\)). Crystalline ice is thus formed.

  19. 19.

    See p. 123.

  20. 20.

    See p. 494.

  21. 21.

    See p. 390 and following.

  22. 22.

    See p. 378.

  23. 23.

    See p. 152.

  24. 24.

    See p. 154.

References

  1. A. Lottermoser, Berichte der Dtsch. Chem. Gesellschaft 41(3), 3976 (1908). doi:10.1002/cber.19080410398

  2. H.W. Foote, B. Saxton, J. Am. Chem. Soc. 38(3), 588 (1916). doi:10.1021/ja02260a007

    Article  Google Scholar 

  3. J.R.I. Hepburn, Recl. des Trav. Chim. des Pays-Bas 45(5), 321 (1926). doi:10.1002/recl.19260450506

    Article  Google Scholar 

  4. S. Taber, J. Geol. 37(5), 428 (1929). doi:10.1086/623637

    Article  Google Scholar 

  5. A. Weiss, R. Fahn, U. Hofmann, Naturwissenschaften 39(15), 351 (1952). doi:10.1007/BF00589943

    Article  Google Scholar 

  6. J.L. Ahlrichs, J.L. White, Science 136(3522), 1116 (1962). doi:10.1126/science.136.3522.1116-a

  7. K. Norrish, J. Rausell-Colom, Clay Miner. 5, 9 (1962)

    Article  Google Scholar 

  8. E. Halberstadt, H. Henisch, J. Colloid Interface Sci. 29(3), 469 (1969). doi:10.1016/0021-9797(69)90129-5

    Article  Google Scholar 

  9. R. Borst, F. Shell, J. Pet. Technol. 23(10), 1193 (1971). doi:10.2118/3110-PA

    Article  Google Scholar 

  10. V.H. Kautsky, R. Irnich, Z. Anorg, Allg. Chem. 295, 192 (1958)

    Google Scholar 

  11. W. Mahler, M.F. Bechtold, Nature 285(5759), 27 (1980). doi:10.1038/285027a0

    Article  Google Scholar 

  12. L. Allenspach, Cryobiology 179, 170 (1989)

    Article  Google Scholar 

  13. G. Ezekwo, H.M. Tong, C.C. Gryte, Water Res. 14(8), 1079 (1980). doi:10.1016/0043-1354(80)90156-6

    Article  Google Scholar 

  14. W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35(2), 444 (1964). doi:10.1063/1.1713333

    Article  Google Scholar 

  15. F.A. DiGioia, R.E. Nelson, Ind. Eng. Chem. 45(4), 745 (1953). doi:10.1021/ie50520a028

    Article  Google Scholar 

  16. H. Nakazawa, H. Yamada, T. Fujita, Y. Ito, Clay Sci. 6, 269 (1987)

    Google Scholar 

  17. J.I. Fukasawa, K. Tsujii, J. Colloid Interface Sci. 125(1), 155 (1988). doi:10.1016/0021-9797(88)90064-1

    Article  Google Scholar 

  18. M. Statham, F. Hammett, S.B. Harris, R. Cooke, J. Sol-Gel Sci. Technol. 13, 171 (1998). doi:10.1023/A:1008696531687

    Article  Google Scholar 

  19. J. Laurie, C.M. Bagnall, B. Harris, R.W. Jones, R.G. Cooke, R.S. Russell-Floyd, T.H. Wang, F.W. Hammett, J. Non-Cryst. Solids 147–148(C), 320 (1992). doi:10.1016/S0022-3093(05)80637-4

  20. T. Fukasawa, Z. Deng, M. Ando, J. Mater. Sci. 6, 2523 (2001). doi:10.1023/A:1017946518955

    Article  Google Scholar 

  21. Y. Chino, D.C. Dunand, Acta Mater. 56(1), 105 (2008). doi:10.1016/j.actamat.2007.09.002

    Article  Google Scholar 

  22. S.W. Yook, B.H. Yoon, H.E. Kim, Y.H. Koh, Y.S. Kim, Mater. Lett. 62(30), 4506 (2008). doi:10.1016/j.matlet.2008.08.010

    Article  Google Scholar 

  23. K. Lu, X. Zhu, Int. J. Appl. Ceram. Technol. 5(3), 219 (2008). doi:10.1111/j.1744-7402.2008.02204.x

    Article  Google Scholar 

  24. K. Lu, C.S. Kessler, R.M. Davis, J. Am. Ceram. Soc. 89(8), 2459 (2006). doi:10.1111/j.1551-2916.2006.01111.x

    Article  Google Scholar 

  25. T. Moritz, H.J. Richter, Adv. Sci. Technol. 45, 391 (2006). doi:10.4028/www.scientific.net/AST.45.391

    Article  Google Scholar 

  26. S. Deville, E. Saiz, A.P. Tomsia, Acta Mater. 55(6), 1965 (2007). doi:10.1016/j.actamat.2006.11.003

    Article  Google Scholar 

  27. T. Waschkies, R. Oberacker, M.J. Hoffmann, J. Am. Ceram. Soc. 92, S79 (2009). doi:10.1111/j.1551-2916.2008.02673.x

    Article  Google Scholar 

  28. A. Preiss, B. Su, S. Collins, D. Simpson, J. Eur. Ceram. Soc. 32(8), 1575 (2012). doi:10.1016/j.jeurceramsoc.2011.12.031

    Article  Google Scholar 

  29. M. Adamkiewicz, B. Rubinsky, Cryobiology 71(3), 518 (2015). doi:10.1016/j.cryobiol.2015.10.152

    Article  Google Scholar 

  30. S.W. Sofie, J. Am. Ceram. Soc. 90(7), 2024 (2007). doi:10.1111/j.1551-2916.2007.01720.x

    Article  Google Scholar 

  31. S. Han, K. Zhao, Y. Tang, L. Xu, J. Chin. Ceram. Soc. 41(2), 140 (2013). doi:10.7521/j.issn.0454-5648.2013.02.03

    Google Scholar 

  32. L. Ren, Y.P. Zeng, D. Jiang, Solid State Sci. 12(1), 138 (2010). doi:10.1016/j.solidstatesciences.2009.09.021

    Article  Google Scholar 

  33. T.R. Brosten, S.L. Codd, K.V. Romanenko, S.W. Sofie, J.D. Seymour, AIChE J. 55(10), 2506 (2009). doi:10.1002/aic.11872

    Article  Google Scholar 

  34. J. Shi, X. Xue, Chem. Eng. J. 181–182, 607 (2012). doi:10.1016/j.cej.2011.11.112

    Article  Google Scholar 

  35. T. Liu, Y. Chen, S. Fang, L. Lei, Y. Wang, C. Ren, F. Chen, J. Membr. Sci. 520, 354 (2016). doi:10.1016/j.memsci.2016.07.046

    Article  Google Scholar 

  36. T.L. Cable, S.W. Sofie, J. Power Sour. 174(1), 221 (2007). doi:10.1016/j.jpowsour.2007.08.110

    Article  Google Scholar 

  37. T.L. Cable, J.A. Setlock, S.C. Farmer, A.J. Eckel, Int. J. Appl. Ceram. Technol. 8(1), 1 (2011). doi:10.1111/j.1744-7402.2009.02477.x

  38. H. Fan, M. Keane, N. Li, D. Tang, P. Singh, M. Han, Int. J. Hydrogen Energy 39(26), 14071 (2014). doi:10.1016/j.ijhydene.2014.05.149

    Article  Google Scholar 

  39. Y. Chen, J. Bunch, T. Li, Z. Mao, F. Chen, J. Power Sour. 213, 93 (2012). doi:10.1016/j.jpowsour.2012.03.109

    Article  Google Scholar 

  40. P. Wei, S.W. Sofie, Q. Zhang, A. Petric, in Proceedings of the 219th Electrochemical Society Meeting, vol. 35 (2011), pp. 379–383. doi:10.1149/1.3570012

  41. Y. Chen, Q. Liu, Z. Yang, F. Chen, M. Han, RSC Adv. 2(32), 12118 (2012). doi:10.1039/c2ra21921b

    Article  Google Scholar 

  42. Y. Chen, Y. Zhang, J. Baker, P. Majumdar, Z. Yang, M. Han, F. Chen, A.C.S. Appl, Mater. Interfaces 6(7), 5130 (2014). doi:10.1021/am5003662

    Article  Google Scholar 

  43. Y. Chen, Y. Zhang, G. Xiao, Z. Yang, M. Han, F. Chen, ChemElectroChem 2(5), 672 (2015). doi:10.1002/celc.201402411

    Article  Google Scholar 

  44. E. Gorzkowski, M.J. Pan, B.A. Bender, in 2011 International Symposium on the Applications of Ferroelectrics. 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, vol. 200 (IEEE, 2011), pp. 1–3. doi:10.1109/ISAF.2011.6014141

  45. E. Gorzkowski, M.J. Pan, B.A. Bender, in Advances and Applications in Electroceramics (Wiley, Hoboken, 2011), pp. 25–32. doi:10.1002/9781118144480.ch4

  46. G. Lecomte-Nana, A. Mokrani, N. Tessier-Doyen, K. Boussois, H. Goure-Doubi, Ceram. Int. 39(8), 9047 (2013). doi:10.1016/j.ceramint.2013.04.108

    Article  Google Scholar 

  47. P. Gannon, S.W. Sofie, M. Deibert, R. Smith, V. Gorokhovsky, J. Appl. Electrochem. 39(4), 497 (2008). doi:10.1007/s10800-008-9682-4

    Article  Google Scholar 

  48. D. Driscoll, A.J. Weisenstein, S.W. Sofie, Mater. Lett. 65(23–24), 3433 (2011). doi:10.1016/j.matlet.2011.07.066

    Article  Google Scholar 

  49. L. Ren, Y.P. Zeng, D. Jiang, J. Am. Ceram. Soc. 90(9), 3001 (2007). doi:10.1111/j.1551-2916.2007.01833.x

    Article  Google Scholar 

  50. J. Gurauskis, C. Graves, R. Moreno, M. Nieto, J. Eur. Ceram. Soc. 37, 697 (2017). doi:10.1016/j.jeurceramsoc.2016.08.031

    Article  Google Scholar 

  51. H. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, A.I. Cooper, Nat. Mater. 4(10), 787 (2005). doi:10.1038/nmat1487

    Article  Google Scholar 

  52. H.E. Romeo, F. Trabadelo, M. Jobbagy, R. Parra, J. Mater. Chem. C 2(15), 2806 (2014). doi:10.1039/c3tc32370f

    Article  Google Scholar 

  53. X. Wang, B. Yang, K. Zhou, D. Zhang, Z. Li, C. Zhou, Current Appl. Phys. 15(5), 662 (2015). doi:10.1016/j.cap.2015.02.021

    Article  Google Scholar 

  54. S. An, B. Kim, J. Lee, J. Cryst. Growth (2016). doi:10.1016/j.jcrysgro.2016.08.057

    Google Scholar 

  55. H. Liang, K.J. Ji, L. Zha, W. Hu, Y. Ou, Z.K. Xu, A.C.S. Appl, Mater. Interfaces 8(22), 14174 (2016). doi:10.1021/acsami.6b03071

    Article  Google Scholar 

  56. Y. Shao, M.F. El-Kady, C.W. Lin, G. Zhu, K.L. Marsh, J.Y. Hwang, Q. Zhang, Y. Li, H. Wang, R.B. Kaner. Adv. Mater. 28(31), 6719 (2016). doi:10.1002/adma.201506157

  57. B.S. Kim, M.K. Lee, J. Lee, Macromol. Res. 21(2), 194 (2012). doi:10.1007/s13233-013-1020-y

    Article  Google Scholar 

  58. S.B. Qasim, R.M. Delaine-Smith, T. Fey, A. Rawlinson, I.U. Rehman, Acta Biomater. 23, 317 (2015). doi:10.1016/j.actbio.2015.05.001

    Article  Google Scholar 

  59. H.Y. Kim, S. Jeong, S.Y. Jeong, K.J. Baeg, J.T. Han, M.S. Jeong, G.W. Lee, H.J. Jeong, Nanoscale 7(12), 5495 (2015). doi:10.1039/C4NR07189A

    Article  Google Scholar 

  60. C. Gaudillere, J. Garcia-Fayos, J.M. Serra, J. Mater. Chem. A 207890 (2013). doi:10.1039/c3ta14069e

  61. C. Gaudillere, J. Garcia-Fayos, M. Balaguer, J.M. Serra, ChemSusChem 7(9), 2554 (2014). doi:10.1002/cssc.201402324

    Article  Google Scholar 

  62. C. Gaudillere, J. Garcia-Fayos, J.M. Serra, ChemPlusChem 79(12), 1720 (2014). doi:10.1002/cplu.201402142

    Google Scholar 

  63. A.M. Ferreira, C. Mattu, E. Ranzato, G. Ciardelli, J. Biomed. Mater. Res. Part A 102(12), 4394 (2014). doi:10.1002/jbm.a.35121

    Google Scholar 

  64. M.C. Yang, J.S. Perng, J. Membr. Sci. 187(1–2), 13 (2001). doi:10.1016/S0376-7388(00)00587-1

    Article  Google Scholar 

  65. C. Mu, Y. Su, M. Sun, W. Chen, Z. Jiang, J. Membr. Sci. 361(1–2), 15 (2010). doi:10.1016/j.memsci.2010.06.021

    Article  Google Scholar 

  66. M.K. Lee, N.O. Chung, J. Lee, Polymer 51(26), 6258 (2010). doi:10.1016/j.polymer.2010.10.037

    Article  Google Scholar 

  67. X. Cao, N. Wang, J.Y. Law, S.C.J. Loo, S. Magdassi, Y. Long, Langmuir 30(6), 1710 (2014). doi:10.1021/la404666n

    Article  Google Scholar 

  68. Y. Zhou, X. Tian, P. Wang, M. Hu, G. Du, Sci. Rep. 6, 26438 (2016). doi:10.1038/srep26438

    Article  Google Scholar 

  69. Y.M. Soon, K.H. Shin, Y.H. Koh, W.Y. Choi, H.E. Kim, J. Eur. Ceram. Soc. 31(3), 415 (2010). doi:10.1016/j.jeurceramsoc.2010.09.019

    Article  Google Scholar 

  70. Y.W. Moon, K.H. Shin, Y.H. Koh, W.Y. Choi, H.E. Kim, J. Eur. Ceram. Soc. 32(5), 1029 (2011). doi:10.1016/j.jeurceramsoc.2011.11.035

    Article  Google Scholar 

  71. T. Huang, M.N. Rahaman, N.D. Doiphode, M.C. Leu, B.S. Bal, D.E. Day, X. Liu, Mater. Sci. Eng. C 31(7), 1482 (2011). doi:10.1016/j.msec.2011.06.004

    Article  Google Scholar 

  72. Y.W. Moon, I.J. Choi, Y.H. Koh, H.E. Kim, Ceram. Int. 41(9), 12371 (2015). doi:10.1016/j.ceramint.2015.06.069

    Article  Google Scholar 

  73. X. Liu, M.N. Rahaman, Q. Fu, Acta Biomater. 7(1), 406 (2011). doi:10.1016/j.actbio.2010.08.025

    Article  Google Scholar 

  74. Y.W. Moon, K.H. Shin, Y.H. Koh, S.W. Yook, C.M. Han, H.E. Kim, J. Am. Ceram. Soc. 95(6), 1803 (2012). doi:10.1111/j.1551-2916.2012.05210.x

    Article  Google Scholar 

  75. Y.W. Moon, K.H.H. Shin, Y.H. Koh, H.D.D. Jung, H.E.E. Kim, J. Am. Ceram. Soc. 97(1), 32 (2014). doi:10.1111/jace.12634

    Article  Google Scholar 

  76. I.J. Choi, Y.W. Moon, Y.H. Koh, H.E. Kim, J. Am. Ceram. Soc. 99(2), 395 (2016). doi:10.1111/jace.14033

    Article  Google Scholar 

  77. A. Li, A. Thornton, B. Deuser, J. Watts, in Proceedings of the SFF Symposium, ed. by J. Beaman, D. Bourell, R. Crawford, H. Marcus, C.C. Seepersad (The University of Texas at Austin, Austin, Texas, USA, 2012), pp. 467–479

    Google Scholar 

  78. J. Spender, A.L. Demers, X. Xie, A.E. Cline, M.A. Earle, L.D. Ellis, D.J. Neivandt, Nano Lett. 12(7), 3857 (2012). doi:10.1021/nl301983d

    Article  Google Scholar 

  79. C. Vix-Guterl, B. McEnaney, P. Ehrburger, J. Eur. Ceram. Soc. 19(4), 427 (1999). doi:10.1016/S0955-2219(98)00223-4

    Article  Google Scholar 

  80. B.H. Yoon, E.J. Lee, H.E. Kim, Y.H. Koh, J. Am. Ceram. Soc. 90(6), 1753 (2007). doi:10.1111/j.1551-2916.2007.01703.x

    Article  Google Scholar 

  81. T. Fukasawa, Z.Y. Deng, M. Ando, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 85(9), 2151 (2002). doi:10.1111/j.1151-2916.2002.tb00426.x

    Article  Google Scholar 

  82. M. Kar, M. Pauline, K.P. Sharma, G. Kumaraswamy, S.S. Gupta, Langmuir 27(19), 12124 (2011). doi:10.1021/la202036c

    Article  Google Scholar 

  83. R. Okaji, K. Taki, S. Nagamine, M. Ohshima, J. Appl. Polym. Sci. 125(4), 2874 (2012). doi:10.1002/app.36443

    Article  Google Scholar 

  84. M. Barrow, A. Eltmimi, A. Ahmed, P. Myers, H. Zhang, J. Mater. Chem. 22(23), 11615 (2012). doi:10.1039/c2jm31425h

    Article  Google Scholar 

  85. V. Tomeckova, J.W. Halloran, J. Am. Ceram. Soc. 95(12), 3763 (2012). doi:10.1111/j.1551-2916.2012.05444.x

    Article  Google Scholar 

  86. M. Klotz, I. Amirouche, C. Guizard, C. Viazzi, S. Deville, Adv. Eng. Mater. 14(12), 1123 (2012). doi:10.1002/adem.201100347

    Article  Google Scholar 

  87. J. Dhainaut, G. Piana, S. Deville, C. Guizard, M. Klotz, Chem. Commun. 50(83), 12572 (2014). doi:10.1039/C4CC05556J

    Article  Google Scholar 

  88. A. Ahmed, T. Hasell, R. Clowes, P. Myers, A.I. Cooper, H. Zhang, Chem. Commun. (Camb). 51(9), 1717 (2015). doi:10.1039/c4cc08919g

    Article  Google Scholar 

  89. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, J. Am. Ceram. Soc. 92(11), 2497 (2009). doi:10.1111/j.1551-2916.2009.03264.x

    Article  Google Scholar 

  90. T. Ziegler, A. Neubrand, R. Piat, Compos. Sci. Technol. 70(4), 664 (2010). doi:10.1016/j.compscitech.2009.12.022

    Article  Google Scholar 

  91. A. Lichtner, D. Roussel, D. Jauffrès, C.L. Martin, R.K. Bordia, J. Am. Ceram. Soc. 99(3), 979 (2016). doi:10.1111/jace.14004

    Article  Google Scholar 

  92. H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, R.O. Ritchie, Adv. Mater. 28(1), 50 (2016). doi:10.1002/adma.201504313

    Article  Google Scholar 

  93. D. Iliescu, I. Baker, Cold Reg. Sci. Technol. 48(3), 202 (2007). doi:10.1016/j.coldregions.2006.11.002

    Article  Google Scholar 

  94. D. Jeulin, M. Moreaud, Image Anal. Stereol. 27, 183–192 (2008)

    Google Scholar 

  95. F. Bouville, E. Portuguez, Y. Chang, G. Messing, A.J. Stevenson, E. Maire, L. Courtois, S. Deville, J. Am. Ceram. Soc. 97(6), 1736 (2014). doi:10.1111/jace.12976

    Article  Google Scholar 

  96. N.N. Cherepanov, Probl. Ark. Antark. 38, 137 (1971)

    Google Scholar 

  97. A. Kovacs, R.M. Morey, J. Geophys. Res. 83(8), 6037 (1978)

    Article  Google Scholar 

  98. T. Ziegler, A. Neubrand, S. Roy, A. Wanner, R. Piat, Compos. Sci. Technol. 69(5), 620 (2009). doi:10.1016/j.compscitech.2008.12.009

    Article  Google Scholar 

  99. S. Roy, B. Butz, A. Wanner, Acta Mater. 58(7), 2300 (2010). doi:10.1016/j.actamat.2009.12.015

    Article  Google Scholar 

  100. R. Piat, Y. Sinchuk, M. Vasoya, O. Sigmund, Acta Mater. 59(12), 4835 (2011). doi:10.1016/j.actamat.2011.04.026

    Article  Google Scholar 

  101. S. Roy, J.M. Gebert, G. Stasiuk, R. Piat, K.A. Weidenmann, A. Wanner, Mater. Sci. Eng. A 528(28), 8226 (2011). doi:10.1016/j.msea.2011.07.029

    Article  Google Scholar 

  102. T. Lowe, S. Roy, A. Wanner, Frat. ed Integrità Strutt. 33, 134 (2015). doi:10.3221/IGF-ESIS.33.17

    Google Scholar 

  103. F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson, S. Deville, Nat. Mater. 13(5), 508 (2014). doi:10.1038/nmat3915

    Article  Google Scholar 

  104. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Science 322(5907), 1516 (2008). doi:10.1126/science.1164865

    Article  Google Scholar 

  105. M. Pourhaghgouy, A. Zamanian, J. Appl. Polym. Sci. 132(7), 41476 (2015). doi:10.1002/app.41476

    Article  Google Scholar 

  106. S. Hostler, A. Abramson, M.D. Gawryla, S. Bandi, D.A. Schiraldi, Int. J. Heat Mass Transf. 52(3–4), 665 (2009). doi:10.1016/j.ijheatmasstransfer.2008.07.002

    Article  Google Scholar 

  107. Y. Wang, M.D. Gawryla, D.A. Schiraldi, J. Appl. Polym. Sci. 129(3), 1637 (2013). doi:10.1002/app.39143

    Article  Google Scholar 

  108. T. Pojanavaraphan, D.A. Schiraldi, R. Magaraphan, Appl. Clay Sci. 50(2), 271 (2010). doi:10.1016/j.clay.2010.08.020

    Article  Google Scholar 

  109. J. Zou, J. Liu, A.S. Karakoti, A. Kumar, D. Joung, Q. Li, S.I. Khondaker, S. Seal, L. Zhai, ACS Nano 4(12), 7293 (2010). doi:10.1021/nn102246a

    Article  Google Scholar 

  110. T. Skaltsas, G. Avgouropoulos, D. Tasis, Microporous Mesoporous Mater. 143(2–3), 451 (2011). doi:10.1016/j.micromeso.2011.03.038

    Article  Google Scholar 

  111. J.W. Kim, K. Tazumi, R. Okaji, M. Ohshima, Chem. Mater. 21(15), 3476 (2009). doi:10.1021/cm901265y

    Article  Google Scholar 

  112. Z. Huang, K. Zhou, D. Lei, Z. Li, Y. Zhang, D. Zhang, Ceram. Int. 39(6), 6035 (2013). doi:10.1016/j.ceramint.2013.01.019

    Article  Google Scholar 

  113. T.Y. Yang, W.Y. Kim, S.Y. Yoon, H.C. Park, J. Phys. Chem. Solids 71(4), 436 (2010). doi:10.1016/j.jpcs.2009.10.017

  114. T.Y. Yang, J.M. Lee, S.Y. Yoon, H.C. Park, J. Mater. Sci. Mater. Med. 21(5), 1495 (2010). doi:10.1007/s10856-010-4000-1

    Article  Google Scholar 

  115. J. Han, L. Hu, Y. Zhang, Y. Zhou, J. Am. Ceram. Soc. 92(9), 2165 (2009). doi:10.1111/j.1551-2916.2009.03168.x

    Article  Google Scholar 

  116. N.O. Shanti, K. Araki, J.W. Halloran, J. Am. Ceram. Soc. 89(8), 2444 (2006). doi:10.1111/j.1551-2916.2006.01094.x

    Article  Google Scholar 

  117. S. Deville, G. Bernard-Granger, J. Eur. Ceram. Soc. 31(6), 983 (2011). doi:10.1016/j.jeurceramsoc.2010.12.021

    Article  Google Scholar 

  118. S. Deville, C. Viazzi, J. Leloup, A. Lasalle, C. Guizard, E. Maire, J. Adrien, L. Gremillard, PLOS One 6(10), e26474 (2011). doi:10.1371/journal.pone.0026474

    Article  Google Scholar 

  119. B.W. Riblett, N.L. Francis, M.A. Wheatley, U.G.K. Wegst, Adv. Funct. Mater. 22(23), 4920 (2012). doi:10.1002/adfm.201201323

    Article  Google Scholar 

  120. E. Munch, E. Saiz, A.P. Tomsia, S. Deville, E. Münch, J. Am. Ceram. Soc. 92(7), 1534 (2009). doi:10.1111/j.1551-2916.2009.03087.x

    Article  Google Scholar 

  121. D. Ghosh, N. Dhavale, M. Banda, H. Kang, Ceram. Int. 42(14), 16138 (2016). doi:10.1016/j.ceramint.2016.07.131

    Article  Google Scholar 

  122. L. Andersson, P.T. Larsson, L. Wågberg, L. Bergström, J. Am. Ceram. Soc. 96(6), 1916 (2013). doi:10.1111/jace.12223

    Article  Google Scholar 

  123. P. Shen, J. Xi, Y. Fu, A. Shaga, C. Sun, Q. Jiang, Acta Metall. Sin. (Engl. Lett.) 27(5), 944 (2014). doi:10.1007/s40195-014-0157-9

  124. R.F. Guo, P. Shen, C. Sun, Y.J. Fu, Y.H. Liu, Z.A. Ren, Q.C. Jiang, J. Mater. Sci. 50(14), 5039 (2015). doi:10.1007/s10853-015-9053-6

    Article  Google Scholar 

  125. J. Seuba, S. Deville, C. Guizard, A.J. Stevenson, Sci. Technol. Adv. Mater. 17(1), 313 (2016). doi:10.1080/14686996.2016.1197757

    Article  Google Scholar 

  126. X. Liu, M.N. Rahaman, Q. Fu, A.P. Tomsia, Acta Biomater. 8(1), 415 (2012). doi:10.1016/j.actbio.2011.07.034

    Article  Google Scholar 

  127. H. Yang, F. Ye, Q. Liu, S. Liu, Y. Gao, L. Liu, Mater. Lett. 138, 135 (2015). doi:10.1016/j.matlet.2014.10.012

    Article  Google Scholar 

  128. S. Vijayan, R. Narasimman, K. Prabhakaran, Ceram. Int. 41(1), 1487 (2015). doi:10.1016/j.ceramint.2014.09.083

    Article  Google Scholar 

  129. J. Lee, T. Yang, S.Y. Yoon, B. Kim, H. Park, Adv. Mater. Res. 156–157, 1649 (2010). doi:10.4028/www.scientific.net/AMR.156-157.1649

    Article  Google Scholar 

  130. S. Flauder, U. Gbureck, F.A. Müller, Acta Biomater. 10(12), 5148 (2014). doi:10.1016/j.actbio.2014.08.020

    Article  Google Scholar 

  131. D.F. Souza, E.H. Nunes, D.S. Pimenta, D.C. Vasconcelos, J.F. Nascimento, W. Grava, M. Houmard, W.L. Vasconcelos, Mater. Charact. 96, 183 (2014). doi:10.1016/j.matchar.2014.08.009

    Article  Google Scholar 

  132. A. Kumar, Y.S. Negi, V. Choudhary, N.K. Bhardwaj, Cellulose 21(5), 3409 (2014). doi:10.1007/s10570-014-0339-7

    Article  Google Scholar 

  133. S. Sadeghpour, A. Amirjani, M. Hafezi, A. Zamanian, Ceram. Int. 40(10), 16107 (2014). doi:10.1016/j.ceramint.2014.07.039

    Article  Google Scholar 

  134. H.L. Hu, Y.P. Zeng, Y.F. Xia, D.X. Yao, K.H. Zuo, Mater. Lett. 133, 285 (2014). doi:10.1016/j.matlet.2014.06.176

    Article  Google Scholar 

  135. Y. Tang, Q. Miao, S. Qiu, K. Zhao, L. Hu, J. Eur. Ceram. Soc. 34(15), 4077 (2014). doi:10.1016/j.jeurceramsoc.2014.05.040

    Article  Google Scholar 

  136. Z. Cheng, K. Zhao, W. Zhang, C. Guo, J. Chin. Ceram. Soc. 42(5), 672 (2014). doi:10.7521/j.issn.0454-5648.2014.05.19

    Google Scholar 

  137. J. Zeng, Y. Zhang, K.C.C. Zhou, D. Zhang, Trans. Nonferrous Met. Soc. China 24(3), 718 (2014). doi:10.1016/S1003-6326(14)63116-2

  138. T. Xu, C.A. Wang, J. Am. Ceram. Soc. 97(6), 1511 (2014). doi:10.1111/jace.12793

    Article  Google Scholar 

  139. D.H. Kim, K.L. Kim, H.H. Chun, T.W. Kim, H.C. Park, S.Y. Yoon, Ceram. Int. 40(6), 8293 (2014). doi:10.1016/j.ceramint.2014.01.031

    Article  Google Scholar 

  140. T.W. Kim, S.C. Ryu, B.K. Kim, S.Y. Yoon, H.C. Park, Met. Mater. Int. 20(1), 135 (2014). doi:10.1007/s12540-014-1007-z

    Article  Google Scholar 

  141. Z. Dong, Q. Zhang, W. Chen, J. Am. Ceram. Soc. 97(4), 1317 (2014). doi:10.1111/jace.12777

    Article  Google Scholar 

  142. S. Farhangdoust, S.M. Rabiee, A. Zamanian, M. Yasaei, M. Khorami, M. Hafezi-Ardakani, Key Eng. Mater. 529–530, 147 (2012). doi:10.4028/www.scientific.net/KEM.529-530.147

    Article  Google Scholar 

  143. V. Naglieri, H.A. Bale, B. Gludovatz, A.P. Tomsia, R.O. Ritchie, Acta Mater. 61(18), 6948 (2013). doi:10.1016/j.actamat.2013.08.006

  144. S.M.H. Ghazanfari, A. Zamanian, Ceram. Int. 39(8), 9835 (2013). doi:10.1016/j.ceramint.2013.05.096

    Article  Google Scholar 

  145. W. Li, K. Lu, J.Y. Walz, J. Am. Ceram. Soc. 96(6), 1763 (2013). doi:10.1111/jace.12355

    Article  Google Scholar 

  146. G. Liu, T.W. Button, Ceram. Int. 39(7), 8507 (2013). doi:10.1016/j.ceramint.2013.02.101

    Article  Google Scholar 

  147. E. Landi, D. Sciti, C. Melandri, V. Medri, J. Eur. Ceram. Soc. 33(10), 1599 (2013). doi:10.1016/j.jeurceramsoc.2013.01.037

    Article  Google Scholar 

  148. Y. Zhang, K. Zhou, Y. Bao, D. Zhang, Mater. Sci. Eng. C 33(1), 340 (2013). doi:10.1016/j.msec.2012.08.048

    Article  Google Scholar 

  149. H.J. Choi, J.H. Lee, S.Y. Yoon, B.K. Kim, H.C. Park, J. Ceram. 13(6), 762 (2012)

    Google Scholar 

  150. P.M. Hunger, A.E. Donius, U.G.K. Wegst, Acta Biomater. 9(5), 6338 (2013). doi:10.1016/j.actbio.2013.01.012

    Article  Google Scholar 

  151. S. Flauder, U. Gbureck, F.A. Müller, K. Ishikawa, Y. Iwamoto. Key Eng. Mater. 529–530, 129 (2012). doi:10.4028/www.scientific.net/KEM.529-530.129

  152. R. Zhang, D. Fang, X. Chen, Y. Pei, Z. Wang, Y. Wang, Mater. Design 46, 746 (2013). doi:10.1016/j.matdes.2012.11.020

    Article  Google Scholar 

  153. P.M. Hunger, A.E. Donius, U.G.K. Wegst, J. Mech. Behav. Biomed. Mater. 19, 87 (2013). doi:10.1016/j.jmbbm.2012.10.013

    Article  Google Scholar 

  154. W. Li, K. Lu, J.Y. Walz, Langmuir 28(47), 16423 (2012). doi:10.1021/la303510s

    Article  Google Scholar 

  155. K. Hamamoto, M. Fukushima, M. Mamiya, Y. Yoshizawa, J. Akimoto, T. Suzuki, Y. Fujishiro, Solid State Ionics 225, 560 (2012). doi:10.1016/j.ssi.2012.01.034

    Article  Google Scholar 

  156. S. Farhangdoust, A. Zamanian, M. Yasaei, M. Khorami, Mater. Sci. Eng. C 33(1), 453 (2013). doi:10.1016/j.msec.2012.09.013

    Article  Google Scholar 

  157. Z. Hou, J. Liu, H. Du, H. Xu, A. Guo, M. Wang, Ceram. Int. 28(9), 799 (2012). doi:10.1016/j.ceramint.2012.07.014

    Google Scholar 

  158. Z. Hou, F. Ye, L. Liu, Q. Liu, Mater. Sci. Eng. A 558, 742 (2012). doi:10.1016/j.msea.2012.08.094

    Article  Google Scholar 

  159. H.D. Jung, S.W. Yook, T.S. Jang, Y. Li, H.E. Kim, Y.H. Koh, Mater. Sci. Eng. C 33(1), 59 (2013). doi:10.1016/j.msec.2012.08.004

    Article  Google Scholar 

  160. Z. Hou, F. Ye, L. Liu, Q. Liu, H. Zhang, Ceram. Int. 39(2), 1075 (2013). doi:10.1016/j.ceramint.2012.07.029

    Article  Google Scholar 

  161. J. Du, X. Zhang, C. Hong, W. Han, Ceram. Int. 39(2), 953 (2013). doi:10.1016/j.ceramint.2012.07.012

    Article  Google Scholar 

  162. Y. Zhang, K. Zhou, X. Zhang, D. Zhang, Chin. J. Mater. Res. 25(3), 289 (2011)

    Google Scholar 

  163. H.J. Choi, T.Y. Yang, S.Y. Yoon, B.K. Kim, H.C. Park, Mater. Chem. Phys. 133(1), 16 (2012). doi:10.1016/j.matchemphys.2011.12.055

    Article  Google Scholar 

  164. D. Li, M. Li, J. Porous Mater. 19(3), 345 (2011). doi:10.1007/s10934-011-9480-y

    Article  Google Scholar 

  165. J.H. Kim, J.H. Lee, T.Y. Yang, S.Y. Yoon, B. Kim, H.C. Park, Ceram. Int. 37(7), 2317 (2011). doi:10.1016/j.ceramint.2011.03.023

    Article  Google Scholar 

  166. J. Yue, B. Dong, H. Wang, J. Am. Ceram. Soc. 94(7), 1989 (2011). doi:10.1111/j.1551-2916.2011.04611.x

    Article  Google Scholar 

  167. K. Zhao, Y.F.F. Tang, Y.S.S. Qin, J.Q. Wei, Ceram. Int. 37(2), 635 (2011). doi:10.1016/j.ceramint.2010.10.003

    Article  Google Scholar 

  168. S. Ding, Y.P. Zeng, D. Jiang, J. Am. Ceram. Soc. 90(7), 2276 (2007). doi:10.1111/j.1551-2916.2007.01696.x

    Article  Google Scholar 

  169. E. Landi, F. Valentini, A. Tampieri, Acta Biomater. 4(6), 1620 (2008). doi:10.1016/j.actbio.2008.05.023

    Article  Google Scholar 

  170. Q. Fu, M.N. Rahaman, F. Dogan, B.S. Bal, J. Biomed. Mater. Res. Part B Appl. Biomater. 86(2), 514 (2008). doi:10.1002/jbm.b.31051

    Article  Google Scholar 

  171. Q. Fu, M.N. Rahaman, F. Dogan, B.S. Bal, Biomed. Mater. 3(2), 025005 (2008). doi:10.1088/1748-6041/3/2/025005

    Article  Google Scholar 

  172. S. Deville, E. Saiz, A.P. Tomsia, Biomaterials 27(32), 5480 (2006). doi:10.1016/j.biomaterials.2006.06.028

    Article  Google Scholar 

  173. Y. Cao, J. He, Chin. J. Mater. Res. 23(5), 518 (2009)

    Google Scholar 

  174. K.H. Zuo, Y.P. Zeng, D. Jiang, Int. J. Appl. Ceram. Technol. 5(2), 198 (2008). doi:10.1111/j.1744-7402.2008.02190.x

  175. Y. Zhang, L. Hu, J. Han, Z. Jiang, Ceram. Int. 36(2), 617 (2010). doi:10.1016/j.ceramint.2009.09.036

    Article  Google Scholar 

  176. B.H. Yoon, W.Y. Choi, H. Kim, J. Kim, Y. Koh. Scr. Mater. 58(7), 537 (2008). doi:10.1016/j.scriptamat.2007.11.006

  177. B.H. Yoon, C.S. Park, H.E. Kim, Y.H. Koh, J. Am. Ceram. Soc. 908(12), 3759 (2007). doi:10.1111/j.1551-2916.2007.02037.x

    Google Scholar 

  178. B.H. Yoon, Y.H. Koh, C.S. Park, H.E. Kim, J. Am. Ceram. Soc. 90(6), 1744 (2007). doi:10.1111/j.1551-2916.2007.01670.x

    Article  Google Scholar 

  179. S.W. Yook, H.E. Kim, Y.H. Koh, Mater. Lett. 63(17), 1502 (2009). doi:10.1016/j.matlet.2009.03.056

    Article  Google Scholar 

  180. S.W. Yook, H.E. Kim, B.H. Yoon, Y.M. Soon, Y.H. Koh, Mater. Lett. 63(11), 955 (2009). doi:10.1016/j.matlet.2009.01.080

    Article  Google Scholar 

  181. A. Macchetta, I.G. Turner, C.R. Bowen, Acta Biomater. 5(4), 1319 (2009). doi:10.1016/j.actbio.2008.11.009

    Article  Google Scholar 

  182. G. Liu, D. Zhang, C. Meggs, T.W. Button, Scr. Mater. 62(7), 466 (2010). doi:10.1016/j.scriptamat.2009.12.018

    Article  Google Scholar 

  183. C. Hong, X. Zhang, J. Han, J. Du, W. Zhang, Mater. Chem. Phys. 119(3), 359 (2010). doi:10.1016/j.matchemphys.2009.10.031

    Article  Google Scholar 

  184. C. Hong, X. Zhang, J. Han, J. Du, W. Han, Scr. Mater. 60(7), 563 (2009). doi:10.1016/j.scriptamat.2008.12.011

    Article  Google Scholar 

  185. J. Han, C. Hong, X. Zhang, J. Du, W. Zhang, J. Eur. Ceram. Soc. 30(1), 53 (2010). doi:10.1016/j.jeurceramsoc.2009.08.018

    Article  Google Scholar 

  186. M. Fukushima, M. Nakata, Y.I. Yoshizawa, J. Ceram. Soc. Jpn. 116(1360), 1322 (2008). doi:10.2109/jcersj2.116.1322

  187. M. Fukushima, M. Nakata, Y. Zhou, T. Ohji, Y.I. Yoshizawa. J. Eur. Ceram. Soc. 30(14), 2889 (2010). doi:10.1016/j.jeurceramsoc.2010.03.018

  188. Q. Fu, M.N. Rahaman, B.S. Bal, R.F. Brown, J. Biomed. Mater. Res. Part A 93(4), 1380 (2010). doi:10.1002/jbm.a.32637

    Article  Google Scholar 

  189. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Science 311(5760), 515 (2006). doi:10.1126/science.1120937

    Article  Google Scholar 

  190. S. Flauder, R. Sajzew, F.A. Müller, A.C.S. Appl, Mater. Interfaces 7(1), 845 (2015). doi:10.1021/am507333q

    Article  Google Scholar 

  191. A. Ojuva, M. Järveläinen, M. Bauer, L. Keskinen, M. Valkonen, F. Akhtar, E. Levänen, L. Bergström, J. Eur. Ceram. Soc. 35(9), 2607 (2015). doi:10.1016/j.jeurceramsoc.2015.03.001

    Article  Google Scholar 

  192. V. Medri, D. Sciti, D. Dalle Fabbriche, A. Piancastelli, E. Landi, Ceram. Int. 41(8), 10324 (2015). doi:10.1016/j.ceramint.2015.04.098

  193. K. Lebreton, J.M. Rodríguez-Parra, R. Moreno, M.I. Nieto, Adv. Appl. Ceram. 114(5), 296 (2015). doi:10.1179/1743676115Y.0000000006

    Article  Google Scholar 

  194. A. Ojuva, F. Akhtar, A.P. Tomsia, L. Bergström, A.C.S. Appl, Mater. Interfaces 5(7), 2669 (2013). doi:10.1021/am400122r

    Article  Google Scholar 

  195. H.D.D. Jung, S.W.W. Yook, C.M.M. Han, T.S.S. Jang, H.E.E. Kim, Y.H. Koh, Y. Estrin, J. Biomed. Mater. Res. Part B Appl. Biomater. 102(5), 913 (2014). doi:10.1002/jbm.b.33072

    Article  Google Scholar 

  196. Y. Zhang, K. Zhou, J. Zeng, D. Zhang, Adv. Appl. Ceram. 112(7), 405 (2013). doi:10.1179/1743676113Y.0000000100

    Article  Google Scholar 

  197. E. Sani, E. Landi, D. Sciti, V. Medri, Sol. Energy Mater. Sol. Cells 144, 608 (2016). doi:10.1016/j.solmat.2015.09.068

    Article  Google Scholar 

  198. E. Meurice, F. Bouchart, J. Hornez, A. Leriche, D. Hautcoeur, V. Lardot, F. Cambier, M. Fernandes, F. Monteiro, J. Eur. Ceram. Soc. 36(12), 2895 (2015). doi:10.1016/j.jeurceramsoc.2015.10.030

    Article  Google Scholar 

  199. H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Sci. Adv. 1(11), e1500849 (2015). doi:10.1126/sciadv.1500849

    Article  Google Scholar 

  200. S.E. Naleway, K.C. Fickas, Y.N. Maker, M.A. Meyers, J. McKittrick, Mater. Sci. Eng. C 61, 105 (2016). doi:10.1016/j.msec.2015.12.012

    Article  Google Scholar 

  201. H. Kirsebom, D. Topgaard, I.Y. Galaev, B. Mattiasson, Langmuir 26(20), 16129 (2010). doi:10.1021/la102917c

    Article  Google Scholar 

  202. S.R. Mukai, S. Murata, K. Onodera, I. Yamada, in AIChE Annual Meeting (Philadelphia, PA, 2008)

    Google Scholar 

  203. H. Mori, K. Aotani, N. Sano, H. Tamon, J. Mater. Chem. 21(15), 5677 (2011). doi:10.1039/c0jm04124f

    Article  Google Scholar 

  204. C. Walter, S. Barg, N. Ni, R.C. Maher, E. Garcia-Tuñón, M.M. Zaiviji Ismail, F. Babot, E. Saiz, J. Eur. Ceram. Soc. 33(13–14), 2365 (2013). doi:10.1016/j.jeurceramsoc.2013.04.024

  205. H. Tamon, T. Akatsuka, H. Mori, N. Sano, Chem. Eng. Trans. 32, 2059 (2013)

    Google Scholar 

  206. M. Kota, X. Yu, S.H. Yeon, H.W. Cheong, H.S. Park, J. Power Sour. 303, 372 (2016). doi:10.1016/j.jpowsour.2015.11.006

    Article  Google Scholar 

  207. H. Tamon, T. Norimoto, N. Sano, in APCChE 2015 Congress Incorporating CHEMECA 2015 (Melbourne, 2015), pp. 14–20

    Google Scholar 

  208. H. Sun, L. Cao, L. Lu, Energy Environ. Sci. 5(3), 6206 (2012). doi:10.1039/c2ee03407g

    Article  Google Scholar 

  209. J.W. Yu, Y.M. Choi, J. Jung, N.H. You, D.S. Lee, J.K. Lee, M. Goh, Synth. Met. 211, 35 (2016). doi:10.1016/j.synthmet.2015.11.009

    Article  Google Scholar 

  210. K. Yang, C.H. Yang, Z. Li, J. Inorg. Mater. 26(11), 1205 (2011). doi:10.3724/SP.J.1077.2011.01205

    Article  Google Scholar 

  211. F. Jiang, Y.L. Hsieh, J. Mater. Chem. A 2(2), 350 (2014). doi:10.1039/C3TA13629A

    Article  Google Scholar 

  212. L.P. Estevez, R. Dua, N. Bhandari, A. Ramanujapuram, P. Wang, E.P. Giannelis, Energy Environ. Sci. 6(6), 1785 (2013). doi:10.1039/c3ee40549d

    Article  Google Scholar 

  213. A.D. Roberts, X. Li, H. Zhang, Carbon N. Y. 95, 268 (2015). doi:10.1016/j.carbon.2015.08.004

    Article  Google Scholar 

  214. H. Nishihara, S.R. Mukai, D. Yamashita, H. Tamon, Chem. Mater. 17(3), 683 (2005). doi:10.1021/cm048725f

    Article  Google Scholar 

  215. S.R. Mukai, H. Nishihara, H. Tamon, Chem. Commun. 2004(7), 874 (2004). doi:10.1039/b316597c

  216. S.R. Mukai, K. Mitani, S. Murata, H. Nishihara, H. Tamon, Mater. Chem. Phys. 123(2–3), 347 (2010). doi:10.1016/j.matchemphys.2010.05.025

    Article  Google Scholar 

  217. S.R. Mukai, Microporous Mesoporous Mater. 63(1–3), 43 (2003). doi:10.1016/S1387-1811(03)00430-X

    Article  Google Scholar 

  218. S.R. Mukai, H. Nishihara, T. Yoshida, K.I. Taniguchi, H. Tamon, Carbon N. Y. 43(7), 1563 (2005). doi:10.1016/j.carbon.2004.12.029

  219. S. Iwamura, K. Kitano, I. Ogino, S.R. Mukai, Microporous Mesoporous Mater. 231, 171 (2016). doi:10.1016/j.micromeso.2016.05.031

    Article  Google Scholar 

  220. J. Dhainaut, S. Deville, I. Amirouche, M. Klotz, Inorganics 4(1), 6 (2016). doi:10.3390/inorganics4010006

    Article  Google Scholar 

  221. H. Zhang, P. D’Angelo Nunes, M. Wilhelm, K. Rezwan, J. Eur. Ceram. Soc. 36(1), 51 (2016). doi:10.1016/j.jeurceramsoc.2015.09.018

  222. E. Papa, V. Medri, P. Benito, A. Vaccari, S. Bugani, J. Jaroszewicz, W. Swieszkowski, E. Landi, Microporous Mesoporous Mater. 215, 206 (2015). doi:10.1016/j.micromeso.2015.05.043

    Article  Google Scholar 

  223. O. Okay, in Polymeric Cryogels. Macroporous Gels with Remarkable Properties. Advances in Polymer Science, vol. 263 (Springer International Publishing, Cham, 2014). doi:10.1007/978-3-319-05846-7

  224. A.D. Roberts, S. Wang, X. Li, H. Zhang, J. Mater. Chem. A 2(42), 17787 (2014). doi:10.1039/C4TA02839B

    Article  Google Scholar 

  225. H. Nishihara, S. Iwamura, T. Kyotani, J. Mater. Chem. 18(31), 3662 (2008). doi:10.1039/b806005c

    Article  Google Scholar 

  226. S.R. Mukai, H. Nishihara, H. Tamon, Catal. Surv. Asia 10(3–4), 161 (2006). doi:10.1007/s10563-006-9015-8

  227. S.R. Mukai, K. Onodera, I. Yamada, Adsorption 17(1), 49 (2010). doi:10.1007/s10450-010-9286-2

    Article  Google Scholar 

  228. S.R. Mukai, H. Nishihara, H. Tamon, Microporous Mesoporous Mater. 116(1–3), 166 (2008). doi:10.1016/j.micromeso.2008.03.031

    Article  Google Scholar 

  229. H. Nishihara, S.R. Mukai, S. Shichi, H. Tamon, Mater. Lett. 64(8), 959 (2010). doi:10.1016/j.matlet.2010.01.073

    Article  Google Scholar 

  230. H. Nishihara, S.R. Mukai, Y. Fujii, T. Tago, T. Masuda, H. Tamon, J. Mater. Chem. 16(31), 3231 (2006). doi:10.1039/b604780g

    Article  Google Scholar 

  231. H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon N. Y. 38(7), 1099 (2000). doi:10.1016/S0008-6223(99)00235-3

    Article  Google Scholar 

  232. I. Ogino, Y. Suzuki, S.R. Mukai, ACS Catal. 5(8), 4951 (2015). doi:10.1021/acscatal.5b01022

    Article  Google Scholar 

  233. I. Ogino, S. Kazuki, S.R. Mukai, J. Phys. Chem. C 118(13), 6866 (2014). doi:10.1021/jp412781d

    Article  Google Scholar 

  234. K.K. Raiwattanawong, H.T. Amon, Chem. Eng. 44(2), 110 (2011)

    Google Scholar 

  235. K. Murakami, Y. Satoh, I. Ogino, S.R. Mukai, Ind. Eng. Chem. Res. 52(44), 15372 (2013). doi:10.1021/ie400656x

    Article  Google Scholar 

  236. S. Yoshida, Y. Kimura, I. Ogino, S.R. Mukai, J. Chem. Eng. Jpn. 46(9), 616 (2013). doi:10.1252/jcej.13we064

    Article  Google Scholar 

  237. E. Papa, V. Medri, P. Benito, A. Vaccari, S. Bugani, J. Jaroszewicz, E. Landi, RSC Adv. 6(29), 24635 (2016). doi:10.1039/C6RA02232D

    Article  Google Scholar 

  238. J. Zhao, Y. He, L. Zhang, K. Lu, J. Alloys Compd. 678, 36 (2016). doi:10.1016/j.jallcom.2016.03.253

    Article  Google Scholar 

  239. Z. Liu, K. Xu, P. She, S. Yin, X. Zhu, H. Sun, Chem. Sci. 7(3), 1926 (2016). doi:10.1039/C5SC03217B

    Article  Google Scholar 

  240. W. Zhou, K. Zhou, D. Hou, X. Liu, G. Li, Y. Sang, H. Liu, L. Li, S. Chen, A.C.S. Appl, Mater. Interfaces 6(23), 21534 (2014). doi:10.1021/am506545g

    Article  Google Scholar 

  241. L. Pei, Q. Jin, Z. Zhu, Q. Zhao, J. Liang, J. Chen, Nano Res. 8(1), 184 (2014). doi:10.1007/s12274-014-0609-6

    Article  Google Scholar 

  242. K.H. Lee, Y.W. Lee, S.W. Lee, J.S. Ha, S.S. Lee, J.G. Son, Sci. Rep. 5, 13696 (2015). doi:10.1038/srep13696

    Article  Google Scholar 

  243. Y. Chen, K.C. Ng, W. Yan, Y. Tang, W. Cheng, RSC Adv. 1(7), 1265 (2011). doi:10.1039/c1ra00532d

    Article  Google Scholar 

  244. K. Sinkó, B. Kobzi, J. Sinclaire, A. Baris, O. Temesi, Microporous Mesoporous Mater. 218(3), 7 (2015). doi:10.1016/j.micromeso.2015.06.018

    Article  Google Scholar 

  245. F. He, C. Sui, X. He, M. Li, Mater. Lett. 152, 9 (2015). doi:10.1016/j.matlet.2015.03.058

    Article  Google Scholar 

  246. X. Zeng, L. Ye, S. Yu, R. Sun, J. Xu, C.P. Wong, Chem. Mater. 27(17), 5849 (2015). doi:10.1021/acs.chemmater.5b00505

    Article  Google Scholar 

  247. J. Zhong, J. Meng, X. Gui, T. Hu, N. Xie, X. Lu, Z. Yang, N. Koratkar, Carbon N. Y. 77, 637 (2014). doi:10.1016/j.carbon.2014.05.068

    Article  Google Scholar 

  248. S.M. Kwon, H.S. Kim, H.J. Jin, Polymer 50(13), 2786 (2009). doi:10.1016/j.polymer.2009.04.056

    Article  Google Scholar 

  249. M.M. Hamedi, A. Hajian, A.B. Fall, K. Håkansson, M. Salajkova, F. Lundell, L. Wågberg, L.A. Berglund. ACS Nano 8(3), 2467 (2014). doi:10.1021/nn4060368

  250. L. Dong, Q. Yang, C. Xu, Y. Li, D. Yang, F. Hou, H. Yin, F. Kang, Carbon N. Y. 90, 164 (2015). doi:10.1016/j.carbon.2015.04.004

    Article  Google Scholar 

  251. P.D. Petrov, G.L. Georgiev, Chem. Commun. 47(20), 5768 (2011). doi:10.1039/c1cc11045d

    Article  Google Scholar 

  252. J. Yan, H. Wang, T. Wu, X. Li, Z. Ding, Compos. Part A Appl. Sci. Manuf. 67, 1 (2014). doi:10.1016/j.compositesa.2014.08.005

    Article  Google Scholar 

  253. H. Sun, Z. Xu, C. Gao, Adv. Mater. 25(18), 2554 (2013). doi:10.1002/adma.201204576

    Article  Google Scholar 

  254. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Adv. Funct. Mater. 26(2), 303 (2016). doi:10.1002/adfm.201503579

    Article  Google Scholar 

  255. J.C. Arboleda, M. Hughes, L.A. Lucia, J. Laine, K. Ekman, O.J. Rojas, Cellulose 20(5), 2417 (2013). doi:10.1007/s10570-013-9993-4

    Article  Google Scholar 

  256. R. Dash, Y. Li, A.J. Ragauskas, Carbohydr. Polym. 88(2), 789 (2012). doi:10.1016/j.carbpol.2011.12.035

    Article  Google Scholar 

  257. Y. Zhou, S. Fu, Y. Pu, S. Pan, A.J. Ragauskas, Carbohydr. Polym. 112, 277 (2014). doi:10.1016/j.carbpol.2014.05.062

    Article  Google Scholar 

  258. T. Barroso, A.C.A. Roque, A. Aguiar-Ricardo, RSC Adv. 2(30), 11285 (2012). doi:10.1039/c2ra21687f

    Article  Google Scholar 

  259. J. Li, T. Ye, B. Zhou, B. Li, RSC Adv. 4(42), 22251 (2014). doi:10.1039/c4ra03165b

    Article  Google Scholar 

  260. A. Freytag, S. Sánchez-Paradinas, S. Naskar, N. Wendt, M. Colombo, G. Pugliese, J. Poppe, C. Demirci, I. Kretschmer, D.W. Bahnemann, P. Behrens, N.C. Bigall, Angew. Chem. 55(3), 1200 (2016). doi:10.1002/anie.201508972

    Article  Google Scholar 

  261. J. Kuang, L. Liu, Y. Gao, D. Zhou, Z. Chen, B. Han, Z. Zhang, Nanoscale 5(24), 12171 (2013). doi:10.1039/c3nr03379a

    Article  Google Scholar 

  262. D. Cai, S. Wang, L. Ding, P. Lian, S. Zhang, F. Peng, H. Wang, J. Power Sour. 254, 198 (2014). doi:10.1016/j.jpowsour.2013.12.136

    Article  Google Scholar 

  263. S. Barg, F.M. Perez, N. Ni, P. do Vale Pereira, R.C. Maher, E. Garcia-Tuñon, S. Eslava, S. Agnoli, C. Mattevi, E. Saiz, Nat. Commun. 5, 4328 (2014). doi:10.1038/ncomms5328

  264. S. Ye, J. Feng, J. Mater. Chem. A 2(27), 10365 (2014). doi:10.1039/c4ta01392a

    Article  Google Scholar 

  265. W. Lv, C. Zhang, Z. Li, Q.H. Yang, J. Phys. Chem. Lett. 6(4), 658 (2015). doi:10.1021/jz502655m

    Article  Google Scholar 

  266. X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem. 21(18), 6494 (2011). doi:10.1039/c1jm10239g

    Article  Google Scholar 

  267. Z. Xu, Y. Zhang, P. Li, C. Gao, ACS Nano 6(8), 7103 (2012). doi:10.1021/nn3021772

    Article  Google Scholar 

  268. C. Li, L. Qiu, B. Zhang, D. Li, C.Y. Liu, Adv. Mater. 28(7), 1510 (2016). doi:10.1002/adma.201504317

    Article  Google Scholar 

  269. H. Yang, T. Zhang, M. Jiang, Y. Duan, J. Zhang, J. Mater. Chem. A 3(38), 19268 (2015). doi:10.1039/C5TA06452J

    Article  Google Scholar 

  270. L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Nat. Commun. 3, 1241 (2012). doi:10.1038/ncomms2251

    Article  Google Scholar 

  271. L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou, J. Ding, V.T. Truong, D. Li, Adv. Mater. 26(20), 3333 (2014). doi:10.1002/adma.201305359

    Article  Google Scholar 

  272. L. Qiu, M. Bulut Coskun, Y. Tang, J.Z. Liu, T. Alan, J. Ding, V.T. Truong, D. Li, Adv. Mater. 28(1), 194 (2016). doi:10.1002/adma.201503957

  273. X. Xie, Y. Zhou, H. Bi, K. Yin, S. Wan, L. Sun, Sci. Rep. 3, 2117 (2013). doi:10.1038/srep02117

    Google Scholar 

  274. Z. Wang, X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu, X. Sun, J.K. Kim, ACS Appl. Mater. Interfaces 7(9), 5538 (2015). doi:10.1021/acsami.5b00146

  275. N. Ni, S. Barg, E. Garcia-Tuñon, F. Macul Perez, M. Miranda, C. Lu, C. Mattevi, E. Saiz, Sci. Rep. 5, 13712 (2015). doi:10.1038/srep13712

  276. W. Chen, Y.X. Huang, D.B. Li, H.Q. Yu, L. Yan, RSC Adv. 4(41), 21619 (2014). doi:10.1039/c4ra00914b

  277. X. Lu, A. Wei, Q. Fan, L. Wang, P. Chen, X. Dong, W. Huang, Mater. Res. Bull. 47(12), 4335 (2012). doi:10.1016/j.materresbull.2012.09.008

    Article  Google Scholar 

  278. M. Tang, T. Wu, H. Na, S. Zhang, X. Li, X. Pang, Mater. Res. Bull. 63, 248 (2015). doi:10.1016/j.materresbull.2014.12.008

    Article  Google Scholar 

  279. J. Kuang, Z. Dai, L. Liu, Z. Yang, M. Jin, Z. Zhang, Nanoscale 7(20), 9252 (2015). doi:10.1039/C5NR00841G

    Article  Google Scholar 

  280. H.L. Gao, Y.B. Zhu, L.B. Mao, F.C. Wang, X.S. Luo, Y.Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y.R. Zheng, L. Xu, L.J. Wang, W.H. Xu, H.A. Wu, S.H. Yu, Nat. Commun. 7, 12920 (2016). doi:10.1038/ncomms12920

    Article  Google Scholar 

  281. Q. Fang, X. Zhou, W. Deng, Z. Liu, Nanoscale 8(1), 197 (2016). doi:10.1039/C5NR06432E

    Article  Google Scholar 

  282. Y. Zhang, Y. Liu, X. Wang, Z. Sun, J. Ma, T. Wu, F. Xing, J. Gao, Carbohydr. Polym. 101, 392 (2014). doi:10.1016/j.carbpol.2013.09.066

    Article  Google Scholar 

  283. L. Ruiyi, Z. Juanjuan, W. Zhouping, L. Zaijun, L. Junkang, G. Zhiguo, W. Guangli, Sens. Actuators B Chem. 208, 421 (2015). doi:10.1016/j.snb.2014.11.004

    Article  Google Scholar 

  284. S. Ye, J. Feng, A.C.S. Appl, Mater. Interfaces 6(12), 9671 (2014). doi:10.1021/am502077p

    Article  Google Scholar 

  285. S. Wang, F. Tristan, D. Minami, T. Fujimori, R. Cruz-Silva, M. Terrones, K. Takeuchi, K. Teshima, F. Rodríguez-Reinoso, M. Endo, K. Kaneko, Carbon N. Y. 76, 220 (2014). doi:10.1016/j.carbon.2014.04.071

    Article  Google Scholar 

  286. S.M. Alhassan, S. Qutubuddin, D.A. Schiraldi, Mater. Lett. 157, 155 (2015). doi:10.1016/j.matlet.2015.05.059

    Article  Google Scholar 

  287. Y. Lu, Q. Sun, D. Yang, X. She, X. Yao, G. Zhu, Y. Liu, H. Zhao, J. Li, J. Mater. Chem. 22(27), 13548 (2012). doi:10.1039/c2jm31310c

    Article  Google Scholar 

  288. J.T. Korhonen, M. Kettunen, R.H.A. Ras, O. Ikkala, ACS Appl. Mater. Interfaces 3(6), 1813 (2011). doi:10.1021/am200475b

  289. Z.M. Ali, L.J. Gibson, Soft Matter 9(5), 1580 (2013). doi:10.1039/c2sm27197d

    Article  Google Scholar 

  290. A.E. Donius, A. Liu, L.A. Berglund, U.G.K. Wegst, J. Mech. Behav. Biomed. Mater. 37, 88 (2014). doi:10.1016/j.jmbbm.2014.05.012

    Article  Google Scholar 

  291. B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergström, Nat. Nanotechnol. 10(3), 277 (2014). doi:10.1038/nnano.2014.248

    Article  Google Scholar 

  292. J. Wang, H.S. Wang, K. Wang, F.B. Wang, X.H. Xia, Sci. Rep. 4, 6723 (2014). doi:10.1038/srep06723

    Article  Google Scholar 

  293. H. Ha, K. Shanmuganathan, C.J. Ellison, A.C.S. Appl, Mater. Interfaces 7(11), 6220 (2015). doi:10.1021/acsami.5b00407

    Article  Google Scholar 

  294. Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Nat. Commun. 5, 5802 (2014). doi:10.1038/ncomms6802

    Article  Google Scholar 

  295. L. Zhang, J. Wu, X. Zhang, G. Gong, J. Liu, L. Guo, RSC Adv. 5, 12592 (2015). doi:10.1039/C4RA15115A

    Article  Google Scholar 

  296. A. Borisova, M. De Bruyn, V.L. Budarin, P.S. Shuttleworth, J.R. Dodson, M.L. Segatto, J.H. Clark, Macromol. Rapid Commun. 36(8), 774 (2015). doi:10.1002/marc.201400680

    Article  Google Scholar 

  297. Z. Xia, S. Wang, L. Jiang, H. Sun, F. Qi, J. Jin, G. Sun, J. Mater. Chem. A 3(4), 1641 (2014). doi:10.1039/C4TA05399K

    Article  Google Scholar 

  298. T. Zhai, Q. Zheng, Z. Cai, L.S. Turng, H. Xia, S. Gong, ACS Appl. Mater. Interfaces 7(13), 7436 (2015). doi:10.1021/acsami.5b01679

  299. Y.T. Wang, S.F. Liao, K. Shang, M.J. Chen, J.Q. Huang, Y.Z. Wang, D.A. Schiraldi, ACS Appl. Mater. Interfaces 7(3), 1780 (2015). doi:10.1021/am507409d

  300. H.B. Chen, Y. Zhao, P. Shen, J. Wang, W. Huang, D.A. Schiraldi, A.C.S. Appl, Mater. Interfaces 7(36), 20208 (2015). doi:10.1021/acsami.5b05776

    Article  Google Scholar 

  301. H.L. Gao, L. Xu, F. Long, Z. Pan, Y.X. Du, Y. Lu, J. Ge, S.H. Yu, Angew. Chem. 53(18), 4561 (2014). doi:10.1002/anie.201400457

    Article  Google Scholar 

  302. T. Maki, S. Sakka, J. Non-Cryst. Solids 82, 239 (1986)

    Article  Google Scholar 

  303. T. Kokubo, Y. Teranishi, K.K. Mallick, J. Non-Cryst. Solids 56, 411 (1983)

    Article  Google Scholar 

  304. S.R. Mukai, H. Nishihara, S. Shichi, H. Tamon, Chem. Mater. 16(24), 4987 (2004). doi:10.1021/cm0491328

    Article  Google Scholar 

  305. B.G. Muralidharan, D.C. Agrawal, J. Mater. Sci. Lett. 13, 1017 (1994). doi:10.1007/bf00277026

    Google Scholar 

  306. Q. Shi, Z. An, C.K. Tsung, H. Liang, N. Zheng, C.J. Hawker, G.D. Stucky, Adv. Mater. 19(24), 4539 (2007). doi:10.1002/adma.200700819

    Article  Google Scholar 

  307. X.Y. Liu, J.M. Yang, L.S. Zha, Z.J. Jiang, Chin. J. Polym. Sci. 32(11), 1544 (2014). doi:10.1007/s10118-014-1508-8

  308. Y. Wang, M. Wakisaka, Carbohydr. Polym. 23(6), 439 (2015). doi:10.1016/j.carbpol.2014.12.080

    Article  Google Scholar 

  309. M. Xiaohui, H. Xiaoxia, D. Haiyan, L. Hanyu, J. Eur. Ceram. Soc. 36(3), 797 (2016). doi:10.1016/j.jeurceramsoc.2015.10.048

    Article  Google Scholar 

  310. X. Hu, L. Yang, L. Li, D. Xie, H. Du, J. Eur. Ceram. Soc. 36(16), 4147 (2016). doi:10.1016/j.jeurceramsoc.2016.05.049

    Article  Google Scholar 

  311. C. Ferraro, E. Garcia-Tuñon, V.G. Rocha, S. Barg, M.D. Fariñas, T.E.G. Alvarez-Arenas, G. Sernicola, F. Giuliani, E. Saiz, Adv. Funct. Mater. 26(10), 1636 (2016). doi:10.1002/adfm.201504051

    Article  Google Scholar 

  312. Y. Mao, Y. Dong, P. Lin, C. Chu, X. Sheng, C. Guo, Mater. Sci. Eng. C 31(1), 9 (2011). doi:10.1016/j.msec.2010.09.013

    Article  Google Scholar 

  313. N. Orakdogen, P. Karacan, O. Okay, React. Funct. Polym. 71(8), 782 (2011). doi:10.1016/j.reactfunctpolym.2011.04.005

    Article  Google Scholar 

  314. A. Ouyang, J. Liang, RSC Adv. 4(49), 25835 (2014). doi:10.1039/c4ra04131c

    Article  Google Scholar 

  315. J. Wang, Q. Gong, D. Zhuang, J. Liang, RSC Adv. 5(22), 16870 (2015). doi:10.1039/C4RA16082G

    Article  Google Scholar 

  316. A. Ouyang, C. Wang, S. Wu, E. Shi, W. Zhao, A. Cao, D. Wu, A.C.S. Appl, Mater. Interfaces 7(26), 14439 (2015). doi:10.1021/acsami.5b03369

    Article  Google Scholar 

  317. J. Yun, C. Tu, D.Q. Lin, L. Xu, Y. Guo, S. Shen, S. Zhang, K. Yao, Y.X. Guan, S.J. Yao, J. Chromatogr. A 1247, 81 (2012). doi:10.1016/j.chroma.2012.05.075

    Article  Google Scholar 

  318. J.H. Park, C.M. Han, E.J. Lee, H.W. Kim, Mater. Lett. 181, 92 (2016). doi:10.1016/j.matlet.2016.06.020

    Article  Google Scholar 

  319. A. Ouyang, A. Cao, S. Hu, Y.H. Li, R. Xu, J. Wei, H. Zhu, D. Wu, A.C.S. Appl, Mater. Interfaces 8(17), 11179 (2016). doi:10.1021/acsami.6b01965

    Article  Google Scholar 

  320. M. Yu, K. Zhou, Y. Zhang, D. Zhang, Ceram. Int. 40(1), 1215 (2013). doi:10.1016/j.ceramint.2013.05.120

    Article  Google Scholar 

  321. S.P. Ishwarya, C. Anandharamakrishnan, A.G. Stapley, Trends Food Sci. Technol. 41(2), 161 (2014). doi:10.1016/j.tifs.2014.10.008

    Article  Google Scholar 

  322. H. Zhang, D. Edgar, P. Murray, A. Rak-Raszewska, L. Glennon-Alty, A.I. Cooper, Adv. Funct. Mater. 18(2), 222 (2008). doi:10.1002/adfm.200701309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Deville .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deville, S. (2017). Ice-Templating: Processing Routes, Architectures, and Microstructures. In: Freezing Colloids: Observations, Principles, Control, and Use. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-50515-2_4

Download citation

Publish with us

Policies and ethics