Skip to main content

Understanding the Freezing of Colloidal Suspensions: Crystal Growth and Particle Redistribution

  • Chapter
  • First Online:
Freezing Colloids: Observations, Principles, Control, and Use

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The solidification of colloidal suspensions is ubiquitous in nature and technology. Whereas we want to control the microstructure and architectures of materials obtained through freezing routes, understand natural phenomena, or finely control the texture of frozen food, a solid understanding of the phenomena and the underlying mechanisms is essential. The basic principles are remarkably simple and can be described with only a few words: crystals grow, and repel and concentrate particles between them. The reality turns out to be rapidly more complex once we start digging into the details and the many parameters that control the phenomenon. What do we have to understand? What are the exact mechanisms and phenomena that take place during the different stages? What do we want to predict and why? When do the suspensions freeze? What controls the freezing point? What controls the morphology of the crystals? Are particles repelled by the crystals? How do particles organise in the frozen body? All these questions are tackled in this chapter. The chapter is organised by following the chronological order of the mechanisms that successively take place during the freezing of colloids: nucleation, growth, particle redistribution and concentration, and eventually recrystallisation. The chapter goes beyond the simple case of colloidal, rigid particles and discuss the case of soft objects such as bubbles or droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See p. 117.

  2. 2.

    See for instance Fig. 13 of [44] or Fig. 7 of [53].

  3. 3.

    For now, we assume that these equations are still valid with colloidal suspensions.

  4. 4.

    see p. 382.

  5. 5.

    These strategies are described p. 388.

  6. 6.

    It is worth to note here that the breakthrough concentration is independent of the nominal concentration of particles in the suspension. Except for a very dilute concentration where only a few particles will be concentrated between the crystals, the breakthrough concentration will be reached during freezing.

  7. 7.

    The same thermocapillary effects are probably encountered in emulsions, although this has not been investigated experimentally yet. Because of the inertia of the droplet, compared to a bubble, the movement of the droplet driven by these effects is probably much smaller.

  8. 8.

    See p. 365.

References

  1. N.H. Fletcher, Philos. Mag. 18(156), 1287 (1968). doi:10.1080/14786436808227758

    Article  Google Scholar 

  2. S.S. Peppin, J.A.W. Elliott, M.G. Worster, J. Fluid Mech. 554(1), 147 (2006). doi:10.1017/S0022112006009268

  3. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, J. Am. Ceram. Soc. 92(11), 2489 (2009). doi:10.1111/j.1551-2916.2009.03163.x

    Article  Google Scholar 

  4. B.H. Yoon, Y.H. Koh, C.S. Park, H.E. Kim, J. Am. Ceram. Soc. 90(6), 1744 (2007). doi:10.1111/j.1551-2916.2007.01670.x

    Article  Google Scholar 

  5. S.W. Yook, H.E. Kim, Y.H. Koh, Mater. Lett. 63(17), 1502 (2009). doi:10.1016/j.matlet.2009.03.056

    Article  Google Scholar 

  6. Y.M. Soon, K.H. Shin, Y.H. Koh, J.H. Lee, H.E. Kim, Mater. Lett. 63(17), 1548 (2009). doi:10.1016/j.matlet.2009.04.013

    Article  Google Scholar 

  7. X. Liu, M.N. Rahaman, Q. Fu, Acta Biomater. 7(1), 406 (2011). doi:10.1016/j.actbio.2010.08.025

    Article  Google Scholar 

  8. M.C. Yang, J.S. Perng, J. Memb. Sci. 187(1–2), 13 (2001). doi:10.1016/S0376-7388(00)00587-1

    Article  Google Scholar 

  9. S.W. Yook, B.H. Yoon, H.E. Kim, Y.H. Koh, Y.S. Kim, Mater. Lett. 62(30), 4506 (2008). doi:10.1016/j.matlet.2008.08.010

    Article  Google Scholar 

  10. B.H. Yoon, E.J. Lee, H.E. Kim, Y.H. Koh, J. Am. Ceram. Soc. 90(6), 1753 (2007). doi:10.1111/j.1551-2916.2007.01703.x

    Article  Google Scholar 

  11. S.E. Naleway, C.F. Yu, M.M. Porter, A. Sengupta, P.M. Iovine, M.A. Meyers, J. McKittrick, Mater. Des. 71, 62 (2015). doi:10.1016/j.matdes.2015.01.010

    Article  Google Scholar 

  12. Y. Tang, S. Qiu, C. Wu, Q. Miao, K. Zhao, J. Eur. Ceram. Soc. 36(6), 1513 (2016). doi:10.1016/j.jeurceramsoc.2015.12.047

    Article  Google Scholar 

  13. H. Liu, K. Nakagawa, D. Chaudhary, Y. Asakuma, M.O. Tadé, Chem. Eng. Res. Des. 89(11), 2356 (2011). doi:10.1016/j.cherd.2011.02.023

    Article  Google Scholar 

  14. A. Lasalle, C. Guizard, J. Leloup, S. Deville, E. Maire, A. Bogner, C. Gauthier, J. Adrien, L. Courtois, J. Am. Ceram. Soc. 95(2), 799 (2012). doi:10.1111/j.1551-2916.2011.04993.x

    Article  Google Scholar 

  15. K. Nakagawa, S. Surassmo, S.G. Min, M.J. Choi, J. Food Eng. 102(2), 177 (2011). doi:10.1016/j.jfoodeng.2010.08.017

    Article  Google Scholar 

  16. H.M. Tong, I. Noda, C.C. Gryte, Colloid Polym. Sci. 262(7), 589 (1984). doi:10.1007/BF01451524

    Article  Google Scholar 

  17. P.T.N. Nguyen, J. Ulrich, Chem. Eng. Technol. 37(8), 1376 (2014). doi:10.1002/ceat.201400032

    Article  Google Scholar 

  18. P. Nguyen, J. Ulrich, J. Food Eng. 153, 1 (2015). doi:10.1016/j.jfoodeng.2014.12.007

    Article  Google Scholar 

  19. H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Sci. Adv. 1(11), e1500849 (2015). doi:10.1126/sciadv.1500849

    Article  Google Scholar 

  20. A. Husmann, K. Pawelec, C. Burdett, S. Best, R. Cameron, J. Biomed. Eng. Inform. 1(1), 10 (2015). doi:10.5430/jbei.v1n1p47

    Article  Google Scholar 

  21. N. Fletcher, Philos. Mag. 7(74), 255 (1962). doi:10.1080/14786436208211860

    Article  Google Scholar 

  22. E. Workman, S. Reynolds, Phys. Rev. 78(3), 254 (1950). doi:10.1103/PhysRev.78.254

    Article  Google Scholar 

  23. T. Waschkies, R. Oberacker, M.J. Hoffmann, J. Am. Ceram. Soc. 92, S79 (2009). doi:10.1111/j.1551-2916.2008.02673.x

    Article  Google Scholar 

  24. A. Preiss, B. Su, S. Collins, D. Simpson, J. Eur. Ceram. Soc. 32(8), 1575 (2012). doi:10.1016/j.jeurceramsoc.2011.12.031

    Article  Google Scholar 

  25. W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35(2), 444 (1964). doi:10.1063/1.1713333

    Article  Google Scholar 

  26. A.M. Anderson, M.G. Worster, Langmuir 28(48), 16512 (2012). doi:10.1021/la303458m

    Article  Google Scholar 

  27. A.M. Anderson, M. Grae, Worster. J. Fluid Mech. 758, 786 (2014). doi:10.1017/jfm.2014.500

  28. S. Miller, X. Xiao, K. Faber, J. Eur. Ceram. Soc. 35(13), 3595 (2015). doi:10.1016/j.jeurceramsoc.2015.05.012

    Article  Google Scholar 

  29. Y.M. El Hasadi, J. Khodadadi, Int. J. Heat Mass Trans. 67, 202 (2013). doi:10.1016/j.ijheatmasstransfer.2013.07.095

    Article  Google Scholar 

  30. P.M. Hunger, A.E. Donius, U.G.K. Wegst, Acta Biomater. 9(5), 6338 (2013). doi:10.1016/j.actbio.2013.01.012

    Article  Google Scholar 

  31. I.A. Quintero Ortega, J.D. Mota-Morales, E.A. Elizalde Peña, D.G. Zárate-Triviño, Y.A. De Santiago, A. Ortiz, B. García Gaitan, I.C. Sanchez, G. Luna-Bárcenas, Ind. Eng. Chem. Res. 52(2), 706 (2013). doi:10.1021/ie301441j

  32. A. Bareggi, E. Maire, A. Lasalle, S. Deville, J. Am. Ceram. Soc. 94(10), 3570 (2011). doi:10.1111/j.1551-2916.2011.04572.x

    Article  Google Scholar 

  33. C. Stolze, T. Janoschka, U.S. Schubert, F.A. Müller, S. Flauder, Adv. Eng. Mater. 18(1), 111 (2016). doi:10.1002/adem.201500235

    Article  Google Scholar 

  34. U.G.K. Wegst, M. Schecter, A.E. Donius, P.M. Hunger, Philos. Trans. Ser. A 368(1917), 2099 (2010). doi:10.1098/rsta.2010.0014

    Article  Google Scholar 

  35. D.J. Jeffrey, Proc. R. Soc. A Math. Phys. Eng. Sci. 335(1602), 355 (1973). doi:10.1098/rspa.1973.0130

  36. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, J. Am. Ceram. Soc. 92(11), 2497 (2009). doi:10.1111/j.1551-2916.2009.03264.x

    Article  Google Scholar 

  37. T. Waschkies, R. Oberacker, M.J. Hoffmann, Acta Mater. 59(13), 5135 (2011). doi:10.1016/j.actamat.2011.04.046

    Article  Google Scholar 

  38. A. Shaga, P. Shen, R.f. Guo, Q.c. Jiang. Ceram. Int. 42(8), 9653 (2016). doi:10.1016/j.ceramint.2016.03.052

  39. S. Deville, J. Adrien, E. Maire, M. Scheel, M. Di Michiel, M.D. Michiel, Acta Mater. 61(6), 2077 (2013). doi:10.1016/j.actamat.2012.12.027

    Article  Google Scholar 

  40. J.W. Kim, K. Tazumi, R. Okaji, M. Ohshima, Chem. Mater. 21(15), 3476 (2009). doi:10.1021/cm901265y

    Article  Google Scholar 

  41. S.A. Barr, E. Luijten, Acta Mater. 58(2), 709 (2010). doi:10.1016/j.actamat.2009.09.050

    Article  Google Scholar 

  42. F. Bouville, E. Maire, S. Deville, Langmuir 30(29), 8656 (2014). doi:10.1021/la404426d

    Article  Google Scholar 

  43. J. Dhainaut, G. Piana, S. Deville, C. Guizard, M. Klotz, Chem. Commun. 50(83), 12572 (2014). doi:10.1039/C4CC05556J

    Article  Google Scholar 

  44. S. Deville, E. Saiz, A.P. Tomsia, Acta Mater. 55(6), 1965 (2007). doi:10.1016/j.actamat.2006.11.003

    Article  Google Scholar 

  45. S. Deville, C. Viazzi, J. Leloup, A. Lasalle, C. Guizard, E. Maire, J. Adrien, L. Gremillard, PLOS One 6(10), e26474 (2011). doi:10.1371/journal.pone.0026474

    Article  Google Scholar 

  46. K. Jackson, J. Hunt, Acta Metall. 13(11), 1212 (1965). doi:10.1016/0001-6160(65)90061-1

    Article  Google Scholar 

  47. T.I. Mah, K.A. Keller, R.J. Kerans, M.K. Cinibulk, J. Am. Ceram. Soc. 98(5), 1437 (2015). doi:10.1111/jace.13500

    Article  Google Scholar 

  48. R. Trivedi, W. Kurz, Acta Metall. Mater. 42(1), 15 (1994). doi:10.1016/0956-7151(94)90044-2

    Article  Google Scholar 

  49. S. Flauder, U. Gbureck, F.A. Müller, Acta Biomater. 10(12), 5148 (2014). doi:10.1016/j.actbio.2014.08.020

    Article  Google Scholar 

  50. C. Walter, S. Barg, N. Ni, R.C. Maher, E. Garcia-Tuñón, M.M. Zaiviji, Ismail, F. Babot, E. Saiz. J. Eur. Ceram. Soc. 33(13–14), 2365 (2013). doi:10.1016/j.jeurceramsoc.2013.04.024

  51. N.O. Shanti, K. Araki, J.W. Halloran, J. Am. Ceram. Soc. 89(8), 2444 (2006). doi:10.1111/j.1551-2916.2006.01094.x

    Article  Google Scholar 

  52. H. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, A.I. Cooper, Nat. Mater. 4(10), 787 (2005). doi:10.1038/nmat1487

    Article  Google Scholar 

  53. V. Naglieri, H.a. Bale, B. Gludovatz, A.P. Tomsia, R.O. Ritchie, Acta Mater. 61(18), 6948 (2013). doi:10.1016/j.actamat.2013.08.006

  54. D.S. Kim, D.K. Kim, Int. J. Appl. Ceram. Technol. 12(5), 921 (2015). doi:10.1111/ijac.12432

    Article  Google Scholar 

  55. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Science 311(5760), 515 (2006). doi:10.1126/science.1120937

    Article  Google Scholar 

  56. W. Weeks, J. Wettlaufer, Johannes Weertman Symposium (1996), pp. 337–350. doi:10.13140/2.1.2433.1842

  57. W.F. Weeks, A.J. Gow, J. Geophys. Res. 83(C10), 5105 (1978). doi:10.1029/JC083iC10p05105

    Article  Google Scholar 

  58. A.E. Donius, R.W. Obbard, J.N. Burger, P.M. Hunger, I. Baker, R.D. Doherty, U.G.K. Wegst, Mater. Charact. 93, 184 (2014). doi:10.1016/j.matchar.2014.04.003

    Article  Google Scholar 

  59. D. Prior, K. Lilly, M. Seidemann, M. Vaughan, L. Becroft, R. Easingwood, S. Diebold, R. Obbard, C. Daghlian, I. Baker, T. Caswell, N. Golding, D. Goldsby, W. Durham, S. Piazolo, C. Wilson, J. Microsc. 259(3), 237 (2015). doi:10.1111/jmi.12258

    Article  Google Scholar 

  60. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, Nat. Mater. 8(12), 966 (2009). doi:10.1038/nmat2571

    Article  Google Scholar 

  61. K. Watanabe, J. Cryst. Growth 237–239(3), 2194 (2002). doi:10.1016/S0022-0248(01)02271-0

    Article  Google Scholar 

  62. M. Carrard, M. Gremaud, M. Zimmermann, W. Kurz, Acta Metall. Mater. 40(5), 983 (1992). doi:10.1016/0956-7151(92)90076-Q

    Article  Google Scholar 

  63. J.A.W. Elliott, S.S. Peppin, Phys. Rev. Lett. 107(16), 168301 (2011). doi:10.1103/PhysRevLett.107.168301

    Article  Google Scholar 

  64. S. Sobolev, Phys. Lett. A 376(47–48), 3563 (2012). doi:10.1016/j.physleta.2012.10.031

    Article  Google Scholar 

  65. S. Taber, J. Geol. 37(5), 428 (1929). doi:10.1086/623637

    Article  Google Scholar 

  66. J.J. Beaudoin, C. MacInnis, Cem. Concr. Res. 4(2), 139 (1974). doi:10.1016/0008-8846(74)90128-8

    Article  Google Scholar 

  67. K. O’Neill, R.D. Miller, Water Resour. Res. 21(3), 281 (1985). doi:10.1029/WR021i003p00281

    Article  Google Scholar 

  68. A.W. Rempel, J.S. Wettlaufer, M.G. Worster, J. Fluid Mech. 498, 227 (2004). doi:10.1017/S0022112003006761

    Article  Google Scholar 

  69. A.W. Rempel, M.G. Worster, J. Cryst. Growth 205(3), 427 (1999)

    Article  Google Scholar 

  70. R.W. Style, S.S. Peppin, A. Cocks, J.S. Wettlaufer, Phys. Rev. E 84(4), 1 (2011). doi:10.1103/PhysRevE.84.041402

    Article  Google Scholar 

  71. R.R. Gilpin, Water Resour. Res. 16(5), 918 (1980). doi:10.1029/WR016i005p00918

    Article  Google Scholar 

  72. P. Christoffersen, S. Tulaczyk, F.D. Carsey, A.E. Behar, J. Geophys. Res. 111(F1), F01017 (2006). doi:10.1029/2005JF000363

    Article  Google Scholar 

  73. M.G. Worster, J.S. Wettlaufer, in Fluid Dynamics at Interface, ed. by R.N. Wei Shyy (Cambridge University Press, 1999), pp. 339–351

    Google Scholar 

  74. S. Akagawa, M. Satoh, S. Kanie, T. Mikami, in Current Practices in Cold Regions Engineering (Orono, Maine, 2006)

    Google Scholar 

  75. R.W. Style, S.S.L. Peppin, A.C.F. Cocks, J.S. Wettlaufer, Phys. Rev. E 84(4), 041402 (2011). doi:10.1103/PhysRevE.84.041402

    Article  Google Scholar 

  76. T. Saruya, A.W. Rempel, K. Kurita, J. Phys. Chem. B 118(47), 13420 (2014). doi:10.1021/jp505366y

    Article  Google Scholar 

  77. J.M.H. Schollick, R.W. Style, A. Curran, J.S. Wettlaufer, E.R. Dufresne, P.B. Warren, K.P. Velikov, R.P.A. Dullens, D.G.A.L. Aarts, J. Phys. Chem. B 120(16), 3941 (2016). doi:10.1021/acs.jpcb.6b00742

    Article  Google Scholar 

  78. A. Lasalle, C. Guizard, E. Maire, J. Adrien, S. Deville, Acta Mater. 60(11), 4594 (2012). doi:10.1016/j.actamat.2012.02.023

    Article  Google Scholar 

  79. S. Deville, S. Meille, J. Seuba, Sci. Technol. Adv. Mater. 16(4), 043501 (2015). doi:10.1088/1468-6996/16/4/043501

    Article  Google Scholar 

  80. F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson, S. Deville, Nat. Mater. 13(5), 508 (2014). doi:10.1038/nmat3915

    Article  Google Scholar 

  81. E. Loth, Powder Technol. 182(3), 342 (2008). doi:10.1016/j.powtec.2007.06.001

    Article  Google Scholar 

  82. P.M. Hunger, A.E. Donius, U.G.K. Wegst, J. Mech. Behav. Biomed. Mater. 19, 87 (2013). doi:10.1016/j.jmbbm.2012.10.013

    Article  Google Scholar 

  83. Y. Chino, D.C. Dunand, Acta Mater. 56(1), 105 (2008). doi:10.1016/j.actamat.2007.09.002

    Article  Google Scholar 

  84. R.W. Style, S.S. Peppin, Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2125), 174 (2010). doi:10.1098/rspa.2010.0039

  85. R.R. Bao, C.Y. Zhang, X.J. Zhang, X.M. Ou, C.S. Lee, J.S. Jie, Xh Zhang, ACS Appl. Mater. Interfaces 5(12), 5757 (2013). doi:10.1021/am4012885

  86. H.T. Meryman, Ann. N. Y. Acad. Sci. 85(2), 503 (1960)

    Article  Google Scholar 

  87. L. Xu, A. Bergès, P.J. Lu, A.R. Studart, A.B. Schofield, H. Oki, S. Davies, D.A. Weitz, Phys. Rev. Lett. 104(12), 128303 (2010). doi:10.1103/PhysRevLett.104.128303

    Article  Google Scholar 

  88. A.R. Studart, Adv. Funct. Mater. 23(36), 4423 (2013). doi:10.1002/adfm.201300340

    Article  Google Scholar 

  89. C. Maurini, B. Bourdin, G. Gauthier, V. Lazarus, Int. J. Fract. 184(1–2), 75 (2013). doi:10.1007/s10704-013-9824-5

    Article  Google Scholar 

  90. B. Dutta, M.K. Surappa, Metall. Mater. Trans. A 29(4), 1319 (1998). doi:10.1007/s11661-998-0258-z

    Article  Google Scholar 

  91. S.N. Omenyi, J. Appl. Phys. 52(2), 796 (1981). doi:10.1063/1.328765

    Article  Google Scholar 

  92. R. Asthana, S.N. Tewari, J. Mater. Sci. 28(20), 5414 (1993). doi:10.1007/BF00367810

    Article  Google Scholar 

  93. C. Körber, M. Rau, Others, J. Cryst. Growth 72(3), 649 (1985)

    Google Scholar 

  94. J.S. Wettlaufer, M.G. Worster, Annu. Rev. Fluid Mech. 38(1), 427 (2006). doi:10.1146/annurev.fluid.37.061903.175758

    Article  Google Scholar 

  95. D. Shangguan, S. Ahuja, D.M. Stefanescu, Metall. Trans. A 23(2), 669 (1992). doi:10.1007/BF02801184

    Article  Google Scholar 

  96. A.A. Chernov, D.E. Temkin, A.M. Mel’nikova, Sov. Phys. Crystallogr. 22(6), 656 (1977)

    Google Scholar 

  97. M.S. Park, A.A. Golovin, S.H. Davis, J. Fluid Mech. 560, 415 (2006). doi:10.1017/S0022112006000796

    Article  Google Scholar 

  98. A. Azouni, P. Casses, Adv. Colloid Interface Sci. 75(2), 83 (1998). doi:10.1016/S0001-8686(97)00002-X

    Article  Google Scholar 

  99. L. Jia, Y. Chen, S. Lei, S. Mo, X. Luo, X. Shao, Appl. Energy 162, 1670 (2016). doi:10.1016/j.apenergy.2015.08.067

    Article  Google Scholar 

  100. C. Growth, J. Pötschke, V. Rogge, J. Cryst. Growth 94(3), 726 (1989). doi:10.1016/0022-0248(89)90097-3

    Article  Google Scholar 

  101. J.W. Garvin, H.S. Udaykumar, J. Cryst. Growth 267(3–4), 724 (2004). doi:10.1016/j.jcrysgro.2004.03.074

    Article  Google Scholar 

  102. A. Azouni, P. Casses, B. Sergiani, Colloids Surfaces A Physicochem. Eng. Asp. 122(1–3), 199 (1997). doi:10.1016/S0927-7757(96)03747-8

    Article  Google Scholar 

  103. G. Lecomte-Nana, V. Coudert, F. Rossignol, A. Lasalle, J. Am. Ceram. Soc. 95(6), 1883 (2012). doi:10.1111/j.1551-2916.2012.05154.x

    Article  Google Scholar 

  104. L. Hadji, Eur. Phys. J. B - Condens. Matter 37(1), 85 (2003). doi:10.1140/epjb/e2004-00032-2

  105. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51(2) (1969)

    Google Scholar 

  106. S. Deville, G. Bernard-Granger, J. Eur. Ceram. Soc. 31(6), 983 (2011). doi:10.1016/j.jeurceramsoc.2010.12.021

    Article  Google Scholar 

  107. L. White, J. Colloid Interface Sci. 90(2), 1 (1982)

    Article  Google Scholar 

  108. L. Goehring, W.J. Clegg, A.F. Routh, Langmuir 26(12), 9269 (2010). doi:10.1021/la100125v

    Article  Google Scholar 

  109. O.M. Bunoiu, T. Duffar, I. Nicoara, Prog. Cryst. Growth Charact. Mater. 56(3–4), 123 (2010). doi:10.1016/j.pcrysgrow.2010.09.001

    Article  Google Scholar 

  110. M. Manga, J. Geophys. Res. 101(B8), 17457 (1996). doi:10.1029/96JB01504

    Article  Google Scholar 

  111. S. Ghosh, J.N. Coupland, Food Hydrocoll. 22(1), 105 (2008). doi:10.1016/j.foodhyd.2007.04.013

    Article  Google Scholar 

  112. Y. Wang, L.L. Regel, W.R. Wilcox, Cryst. Growth Des. 2(5), 453 (2002). doi:10.1021/cg0255063

    Article  Google Scholar 

  113. T. Inada, T. Hatakeyama, F. Takemura, Int. J. Refrig. 32(3), 462 (2009). doi:10.1016/j.ijrefrig.2008.08.008

    Article  Google Scholar 

  114. Z. Wang, J. Lee, ISIJ Int. 39(6), 553 (1999)

    Article  Google Scholar 

  115. A.K. Gupta, B.K. Saxena, S.N. Tiwari, S.L. Malhotra, J. Mater. Sci. 27(4), 853 (1992). doi:10.1007/BF01197634

    Article  Google Scholar 

  116. G. Kletetschka, J. Hruba, Biores. Open. Access 4(1), 209 (2015). doi:10.1089/biores.2015.0008

  117. P.S. Wei, S.Y. Hsiao, Int. J. Heat Mass Transf. 55(25–26), 8129 (2012). doi:10.1016/j.ijheatmasstransfer.2012.08.054

    Article  Google Scholar 

  118. S. Hardy, J. Colloid Interface Sci. 6, 350 (1959). doi:10.1016/0021-9797(79)90090-0

    Google Scholar 

  119. K.S. Bagdasarov, V.V. Okinshevich, A. Kholov, Phys. Stat. Sol. A 58(58), 317 (1980). doi:10.1002/pssa.2210580140

    Article  Google Scholar 

  120. Y.E. Geguzin, A.S. Dzuba, J. Cryst. Growth 52(PART 1), 337 (1981). doi:10.1016/0022-0248(81)90215-3

  121. P.S. Wei, S.Y. Hsiao, in Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition IMECE2012 (ASME, Houston, Texas, USA, 2012), p. 827. doi:10.1115/IMECE2012-85922

  122. N. Maeno, Phys. Snow Ice Proc. 1(1), 207 (1967)

    Google Scholar 

  123. J.I. Fukasawa, K. Tsujii, J. Colloid Interface Sci. 125(1), 155 (1988). doi:10.1016/0021-9797(88)90064-1

    Article  Google Scholar 

  124. P. Munier, K. Gordeyeva, L. Bergström, A.B. Fall, Biomacromolecules 17(5), 1875 (2016). doi:10.1021/acs.biomac.6b00304

    Article  Google Scholar 

  125. C.P. Royall, W.C.K. Poon, E.R. Weeks, Soft Matter 9(1), 17 (2013). doi:10.1039/c2sm26245b

    Article  Google Scholar 

  126. J. Henzie, M. Grünwald, A. Widmer-Cooper, P.L. Geissler, P. Yang, Nat. Mater. 11(2), 131 (2012). doi:10.1038/nmat3178

    Article  Google Scholar 

  127. D. Lumma, L.B. Lurio, M.A. Borthwick, P. Falus, S.G.J. Mochrie, Phys. Rev. E 62(6), 8258 (2000). doi:10.1103/PhysRevE.62.8258

    Article  Google Scholar 

  128. A. Vrij, J. Chem. Phys. 71(8), 3267 (1979). doi:10.1063/1.438756

    Article  Google Scholar 

  129. K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, T. Voigtmann, E. Zaccarelli, Phys. Rev. E 63(1), 011401 (2000). doi:10.1103/PhysRevE.63.011401

    Article  Google Scholar 

  130. J.B. Hayter, J. Penfold, Mol. Phys. 42(1), 109 (1981). doi:10.1080/00268978100100091

    Article  Google Scholar 

  131. S.H. Im, O.O. Park, Appl. Phys. Lett. 80(22), 4133 (2002). doi:10.1063/1.1483385

    Article  Google Scholar 

  132. H. Zhang, D. Edgar, P. Murray, A. Rak-Raszewska, L. Glennon-Alty, A.I. Cooper, Adv. Funct. Mater. 18(2), 222 (2008). doi:10.1002/adfm.200701309

    Article  Google Scholar 

  133. X.Y. Yang, Y. Li, A. Lemaire, J.G. Yu, B.L. Su, Pure Appl. Chem. 81(12), 2265 (2009). doi:10.1351/PAC-CON-09-05-06

    Article  Google Scholar 

  134. Q. Shi, Z. An, C.K. Tsung, H. Liang, N. Zheng, C.J. Hawker, G.D. Stucky, Adv. Mater. 19(24), 4539 (2007). doi:10.1002/adma.200700819

    Article  Google Scholar 

  135. G.L. Hunter, E.R. Weeks, Reports. Prog. Phys. 75(6), 066501 (2012). doi:10.1088/0034-4885/75/6/066501

  136. A. Meller, J. Stavans, Phys. Rev. Lett. 68(24), 3646 (1992). doi:10.1103/PhysRevLett.68.3646

  137. M. Spannuth, S.G.J. Mochrie, S.S. Peppin, J.S. Wettlaufer, Phys. Rev. E 83(2), 32 (2011). doi:10.1103/PhysRevE.83.021402

    Article  Google Scholar 

  138. J. Zheng, D. Salamon, L. Lefferts, M. Wessling, L. Winnubst, Microporous Mesoporous Mater. 134(1–3), 216 (2010). doi:10.1016/j.micromeso.2010.05.012

    Article  Google Scholar 

  139. H.E. Romeo, C.E. Hoppe, M.A. López-Quintela, R.J.J. Williams, Y. Minaberry, M. Jobbagy, J. Mater. Chem. 22(18), 9195 (2012). doi:10.1039/c2jm16329b

    Article  Google Scholar 

  140. F. Bouville, E. Maire, S. Deville, J. Mater. Res. 29(02), 175 (2014). doi:10.1557/jmr.2013.385

    Article  Google Scholar 

  141. F. Bouville, E. Portuguez, Y. Chang, G. Messing, A.J. Stevenson, E. Maire, L. Courtois, S. Deville, J. Am. Ceram. Soc. 97(6), 1736 (2014). doi:10.1111/jace.12976

    Article  Google Scholar 

  142. D. Ghosh, M. Banda, H. Kang, N. Dhavale, Scr. Mater. 125, 29 (2016). doi:10.1016/j.scriptamat.2016.07.030

    Article  Google Scholar 

  143. C. Ferraro, E. Garcia-Tuñon, V.G. Rocha, S. Barg, M.D. Fariñas, T.E.G. Alvarez-Arenas, G. Sernicola, F. Giuliani, E. Saiz, Adv. Funct. Mater. 26(10), 1636 (2016). doi:10.1002/adfm.201504051

    Article  Google Scholar 

  144. J. Lee, Y. Deng, Soft Matter 7(13), 6034 (2011). doi:10.1039/c1sm05388d

    Article  Google Scholar 

  145. J. Han, C. Zhou, Y. Wu, F. Liu, Q. Wu, Biomacromolecules 14(5), 1529 (2013). doi:10.1021/bm4001734

    Article  Google Scholar 

  146. A. Liu, A. Walther, O. Ikkala, L. Belova, L.A. Berglund, Biomacromolecules 12(3), 633 (2011). doi:10.1021/bm101296z

    Article  Google Scholar 

  147. Z. Tang, Na Kotov, S. Magonov, B. Ozturk, Nat. Mater. 2(6), 413 (2003). doi:10.1038/nmat906

  148. M. Li, D. Guo, Q. Zhang, T. Ma, Y. Shi, G. Zhang, X. Li, X. Zhang, Mater. Sci. Eng. A 612, 1 (2014). doi:10.1016/j.msea.2014.06.026

    Article  Google Scholar 

  149. P. Podsiadlo, Z. Liu, D. Paterson, P.B. Messersmith, N.A. Kotov, Adv. Mater. 19(7), 949 (2007). doi:10.1002/adma.200602706

    Article  Google Scholar 

  150. M. Spannuth, S.G.J. Mochrie, S.S. Peppin, J.S. Wettlaufer, J. Chem. Phys. 135(22), 224706 (2011). doi:10.1063/1.3665927

    Article  Google Scholar 

  151. H.M. Jaeger, S.R. Nagel, R. Behringer, Rev. Mod. Phys. 68(4), 1259 (1996). doi:10.1103/RevModPhys.68.1259

  152. J. Wang, Q. Gong, D. Zhuang, J. Liang, RSC Adv. 5(22), 16870 (2015). doi:10.1039/C4RA16082G

    Article  Google Scholar 

  153. M.M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, M.A. Meyers, J. McKittrick, Mater. Sci. Eng. A 556, 741 (2012). doi:10.1016/j.msea.2012.07.058

    Article  Google Scholar 

  154. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009). doi:10.1088/0965-0393/17/7/073001

    Article  Google Scholar 

  155. H. Aufgebauer, J. Kundin, H. Emmerich, M. Azizi, C. Reimann, J. Friedrich, T. Jauß, T. Sorgenfrei, A. Cröll, J. Cryst. Growth 446, 12 (2016). doi:10.1016/j.jcrysgro.2016.04.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Deville .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deville, S. (2017). Understanding the Freezing of Colloidal Suspensions: Crystal Growth and Particle Redistribution. In: Freezing Colloids: Observations, Principles, Control, and Use. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-50515-2_3

Download citation

Publish with us

Policies and ethics