Skip to main content

Investigating the Freezing of Colloids: Experimental Techniques to Probe Solidification Patterns, Crystal Growth, and Particle Movement

  • Chapter
  • First Online:
Book cover Freezing Colloids: Observations, Principles, Control, and Use

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1979 Accesses

Abstract

The freezing of colloids is a complex phenomenon, with multiple, interdependent parameters. A proper observation is thus often the first step towards a better understanding. Many concomitant phenomena take place during the freezing of colloids, related to the growth of the crystals, the redistribution and packing of particles, and the interactions between the front and the particles. Observations and measurements, whether direct or indirect, often provide a first, qualitative and quantitative approach. Such observations are valuable to feed the models developed to predict and understand the freezing of colloids, in particular when they become quantitative. This chapter covers both indirect (force measurement, X-ray scattering and diffraction) and direct methods (light, electron, and X-ray imaging, as well as spectroscopy). The various methods cover a broad range of space and time scales required to completely apprehend the various phenomena of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The samples can also be frozen externally and transferred to the observation chamber with a cryo-transfer system.

  2. 2.

    See p. 97.

References

  1. C. Stolze, T. Janoschka, U.S. Schubert, F.A. Müller, S. Flauder, Adv. Eng. Mater. 18(1), 111 (2016). doi:10.1002/adem.201500235

    Article  Google Scholar 

  2. H. Pruppacher, J. Glaciol. 6(47), 651 (1967)

    Google Scholar 

  3. D.L. Feltham, J. Geophys. Res. 107(C2), 3009 (2002). doi:10.1029/2000JC000559

    Article  Google Scholar 

  4. S. Omenyi, A. Neumann, J. Appl. Phys. (1976)

    Google Scholar 

  5. J. Cissé, J. Cryst. Growth 10(1), 67 (1971). doi:10.1016/0022-0248(71)90047-9

    Article  Google Scholar 

  6. B. Dutta, M.K. Surappa, Metall. Mater. Trans. A 29(4), 1329 (1998). doi:10.1007/s11661-998-0259-y

    Article  Google Scholar 

  7. G. Wilde, M. Byrnes, J. Perepezko, J. Non. Cryst. Solids 250–252(2), 626 (1999). doi:10.1016/S0022-3093(99)00148-9

    Article  Google Scholar 

  8. H. Ishiguro, B. Rubinsky, Cryobiology 31(5), 483 (1994). doi:10.1006/cryo.1994.1059

    Article  Google Scholar 

  9. P. Casses, A. Azouni, Int. Commun. Heat Mass Transf. 22(4), 605 (1995)

    Article  Google Scholar 

  10. C. Körber, M. Rau et al., J. Cryst. Growth 72(3), 649 (1985)

    Article  Google Scholar 

  11. G. Lipp, C. Körber, G. Rau, J. Cryst. Growth 99(1–4), 206 (1990)

    Article  Google Scholar 

  12. K. Jackson, J. Hunt, Acta Metall. 13(11), 1212 (1965). doi:10.1016/0001-6160(65)90061-1

    Article  Google Scholar 

  13. I. Farup, J.M. Drezet, M. Rappaz, Acta Mater. 49(7), 1261 (2001). doi:10.1016/S1359-6454(01)00013-1

    Article  Google Scholar 

  14. H. Xing, J.Y. Wang, C.L. Chen, Z.F. Shen, C.W. Zhao, J. Cryst. Growth 338(1), 256 (2012). doi:10.1016/j.jcrysgro.2011.10.047

    Article  Google Scholar 

  15. A.M. Anderson, M.G. Worster, Langmuir 28(48), 16512 (2012). doi:10.1021/la303458m

    Article  Google Scholar 

  16. Y. Suzuki, G. Sazaki, K. Hashimoto, T. Fujiwara, Y. Furukawa, J. Cryst. Growth 383, 67 (2013). doi:10.1016/j.jcrysgro.2013.08.026

    Article  Google Scholar 

  17. J. You, L. Wang, Z. Wang, J. Li, J. Wang, X. Lin, W. Huang, Rev. Sci. Instrum. 86(8), 084901 (2015). doi:10.1063/1.4928108

    Article  Google Scholar 

  18. J.M.H. Schollick, R.W. Style, A. Curran, J.S. Wettlaufer, E.R. Dufresne, P.B. Warren, K.P. Velikov, R.P.A. Dullens, D.G.A.L. Aarts, J. Phys. Chem. B 120(16), 3941 (2016). doi:10.1021/acs.jpcb.6b00742

    Article  Google Scholar 

  19. S.S. Peppin, J.S. Wettlaufer, M.G. Worster, Phys. Rev. Lett. 100(23), 1 (2008). doi:10.1103/PhysRevLett.100.238301

    Article  Google Scholar 

  20. S.S. Peppin, J.A.W. Elliott, M.G. Worster, J. Fluid Mech. 554(1), 147 (2006). doi:10.1017/S0022112006009268

    Article  Google Scholar 

  21. S.S. Peppin, M.G. Worster, J.S. Wettlaufer, Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2079), 723 (2007). doi:10.1098/rspa.2006.1790

    Article  Google Scholar 

  22. A.M. Anderson, M. Grae Worster, J. Fluid Mech. 758, 786 (2014). doi:10.1017/jfm.2014.500

    Article  Google Scholar 

  23. L. Wang, J. You, Z. Wang, J. Wang, X. Lin, Sci. Rep. 6, 23358 (2016). doi:10.1038/srep23358

    Article  Google Scholar 

  24. J. You, L. Wang, Z. Wang, J. Li, J. Wang, X. Lin, W. Huang, Sci. Rep. 6, 28434 (2016). doi:10.1038/srep28434

    Article  Google Scholar 

  25. A. Bogner, G. Thollet, D. Basset, P.H. Jouneau, C. Gauthier, Ultramicroscopy 104(3–4), 290 (2005). doi:10.1016/j.ultramic.2005.05.005

    Article  Google Scholar 

  26. M.L. Ferrer, R. Esquembre, I. Ortega, C.R. Mateo, F. del Monte, Chem. Mater. 18(2), 554 (2006). doi:10.1021/cm052087z

    Article  Google Scholar 

  27. A.E. Donius, R.W. Obbard, J.N. Burger, P.M. Hunger, I. Baker, R.D. Doherty, U.G.K. Wegst, Mater. Charact. 93, 184 (2014). doi:10.1016/j.matchar.2014.04.003

    Article  Google Scholar 

  28. P. Prado, B. Balcom, S. Beyea, T. Bremner, R. Armstrong, P. Grattan-Bellew, Cem. Concr. Res. 28(2), 261 (1998). doi:10.1016/S0008-8846(97)00222-6

    Article  Google Scholar 

  29. W.L. Kerr, R.J. Kauten, M.J. McCarthy, D.S. Reid, LWT - Food Sci. Technol. 31(3), 215 (1998). doi:10.1006/fstl.1997.0323

    Article  Google Scholar 

  30. H. Eicken, C. Bock, R. Wittig, H. Miller, H.O. Poertner, Cold Reg. Sci. Technol. 31(3), 207 (2000). doi:10.1016/S0165-232X(00)00016-1

    Article  Google Scholar 

  31. P. Aussillous, A. Sederman, L. Gladden, H. Huppert, M.G. Worster, in XXI ICTAM (2004)

    Google Scholar 

  32. M.K. Lee, M.H. Rich, A. Shkumatov, J.H. Jeong, M.D. Boppart, R. Bashir, M.U. Gillette, J. Lee, H. Kong, Adv. Healthc. Mater. 4(2), 195 (2015). doi:10.1002/adhm.201400153

    Article  Google Scholar 

  33. G. Do, T. Araki, Y. Bae, K. Ishikura, Y. Sagara, Dry. Technol. 33(13), 1614 (2015). doi:10.1080/07373937.2015.1029073

    Article  Google Scholar 

  34. G.E. Sosinsky, J. Crum, Y.Z. Jones, J. Lanman, B. Smarr, M. Terada, M.E. Martone, T.J. Deerinck, J.E. Johnson, M.H. Ellisman, J. Struct. Biol. 161(3), 359 (2008)

    Article  Google Scholar 

  35. R.J. Mikula, V.A. Munoz, Colloids Surf. 174, 23 (2000)

    Article  Google Scholar 

  36. J. Du, R.A. Pushkarova, R.S. Smart, Int. J. Miner. Process. 93(1), 66 (2009). doi:10.1016/j.minpro.2009.06.004

    Article  Google Scholar 

  37. C.L. Zhao, S. Porzio, A. Smith, H. Ge, H.T. Davis, L.E. Scriven, J. Coat. Technol. Res. 3(2), 109 (2006). doi:10.1007/s11998-006-0013-6

    Article  Google Scholar 

  38. A. Lasalle, C. Guizard, S. Deville, F. Rossignol, P. Carles, J. Am. Ceram. Soc. 94(1), 244 (2011). doi:10.1111/j.1551-2916.2010.04034.x

    Article  Google Scholar 

  39. D. Studer, M. Michel, M. Wohlwend, E.B. Hunziker, M.D. Buschmann, J. Microsc. 179(Pt 3), 321 (1995)

    Article  Google Scholar 

  40. M.F. Butler, Cryst. Growth Des. 2(6), 541 (2002)

    Article  Google Scholar 

  41. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, Nat. Mater. 8(12), 966 (2009). doi:10.1038/nmat2571

    Article  Google Scholar 

  42. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, J. Am. Ceram. Soc. 92(11), 2497 (2009). doi:10.1111/j.1551-2916.2009.03264.x

    Article  Google Scholar 

  43. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, J. Am. Ceram. Soc. 92(11), 2489 (2009). doi:10.1111/j.1551-2916.2009.03163.x

    Article  Google Scholar 

  44. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, J. Am. Ceram. Soc. 93(9), 2507 (2010). doi:10.1111/j.1551-2916.2010.03840.x

    Article  Google Scholar 

  45. A. Lasalle, C. Guizard, E. Maire, J. Adrien, S. Deville, Acta Mater. 60(11), 4594 (2012). doi:10.1016/j.actamat.2012.02.023

    Article  Google Scholar 

  46. B. Delattre, H. Bai, R.O. Ritchie, J. De Coninck, A.P. Tomsia, A.C.S. Appl, Mater. Interfaces 6(1), 159 (2014). doi:10.1021/am403793x

    Article  Google Scholar 

  47. D.F. Souza, E.H. Nunes, D.S. Pimenta, D.C. Vasconcelos, J.F. Nascimento, W. Grava, M. Houmard, W.L. Vasconcelos, Mater. Charact. 96, 183 (2014). doi:10.1016/j.matchar.2014.08.009

    Article  Google Scholar 

  48. A. Bareggi, E. Maire, A. Lasalle, S. Deville, J. Am. Ceram. Soc. 94(10), 3570 (2011). doi:10.1111/j.1551-2916.2011.04572.x

    Article  Google Scholar 

  49. S. Deville, J. Adrien, E. Maire, M. Scheel, M. Di Michiel, M.D. Michiel, Acta Mater. 61(6), 2077 (2013). doi:10.1016/j.actamat.2012.12.027

    Article  Google Scholar 

  50. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671 (2012). doi:10.1038/nmeth.2089

    Article  Google Scholar 

  51. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods 9(7), 676 (2012). doi:10.1038/nmeth.2019

    Article  Google Scholar 

  52. S. van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, T. Yu, PeerJ 2, e453 (2014). doi:10.7717/peerj.453

    Article  Google Scholar 

  53. D.B. Hovis, A.H. Heuer, J. Microsc. 240(3), 173 (2010). doi:10.1111/j.1365-2818.2010.03399.x

    Article  Google Scholar 

  54. P.J. Lu, Gelation and Phase Separation of Attractive Colloids. Ph.D. thesis, Harvard University (2008)

    Google Scholar 

  55. V. Prasad, D. Semwogerere, E.R. Weeks, J. Phys. Condens. Matter 19(11), 113102 (2007). doi:10.1088/0953-8984/19/11/113102

    Article  Google Scholar 

  56. E.R. Weeks, C. Nugent, Rep. Inst. Fluid Sci. 19 (2007)

    Google Scholar 

  57. U. Gasser, E.R. Weeks, A.B. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)

    Article  Google Scholar 

  58. L. Ma, Biomaterials 24(26), 4833 (2003). doi:10.1016/S0142-9612(03)00374-0

    Article  Google Scholar 

  59. G. Kumaraswamy, B. Biswas, C.K. Choudhury, Faraday Discuss. 186, 61 (2016). doi:10.1039/C5FD00125K

    Article  Google Scholar 

  60. M. Marcellini, C. Noirjean, D. Dedovets, J. Maria, S. Deville, ACS Omega (2016). doi:10.1021/acsomega.6b00217

  61. P.L. Gai, Microsc. Microanal. 8(1), 21 (2002). doi:10.1017/S1431927601010054

    Article  Google Scholar 

  62. E.R. White, M. Mecklenburg, B. Shevitski, S.B. Singer, B.C. Regan, Langmuir 28(8), 3695 (2012). doi:10.1021/la2048486

    Article  Google Scholar 

  63. K. Tai, Y. Liu, S.J. Dillon, Microsc. Microanal. 20(2), 330 (2014). doi:10.1017/S1431927613014128

    Article  Google Scholar 

  64. S. Piazolo, M. Montagnat, J.R. Blackford, J. Microsc. 230(3), 509 (2008). doi:10.1111/j.1365-2818.2008.02014.x

    Article  Google Scholar 

  65. I. Weikusat, D.A.M. de Winter, G.M. Pennock, M. Hayles, C.T.W.M. Schneijdenberg, M.R. Drury, J. Microsc. 242(3), 295 (2011). doi:10.1111/j.1365-2818.2010.03471.x

    Article  Google Scholar 

  66. R. Obbard, J. Glaciol. 52(179), 546 (2006). doi:10.3189/172756506781828458

    Article  Google Scholar 

  67. M. Montagnat, J.R. Blackford, S. Piazolo, L. Arnaud, R.A. Lebensohn, Earth Planet. Sci. Lett. 305(1–2), 153 (2011). doi:10.1016/j.epsl.2011.02.050

    Article  Google Scholar 

  68. D.J. Prior, S. Diebold, R. Obbard, C. Daghlian, D.L. Goldsby, W.B. Durham, I. Baker, Scr. Mater. 66(2), 69 (2012). doi:10.1016/j.scriptamat.2011.09.044

    Article  Google Scholar 

  69. D. Prior, K. Lilly, M. Seidemann, M. Vaughan, L. Becroft, R. Easingwood, S. Diebold, R. Obbard, C. Daghlian, I. Baker, T. Caswell, N. Golding, D. Goldsby, W. Durham, S. Piazolo, C. Wilson, J. Microsc. 259(3), 237 (2015). doi:10.1111/jmi.12258

    Article  Google Scholar 

  70. S. Deville, C. Viazzi, J. Leloup, A. Lasalle, C. Guizard, E. Maire, J. Adrien, L. Gremillard, PLOS One 6(10), e26474 (2011). doi:10.1371/journal.pone.0026474

    Article  Google Scholar 

  71. D.B. Varshney, J.A. Elliott, L.A. Gatlin, S. Kumar, R. Suryanarayanan, E.Y. Shalaev, J. Phys. Chem. B 113(18), 6177 (2009). doi:10.1021/jp900404m

    Article  Google Scholar 

  72. G. Gupta, R.F. Rice, W.R. Wilcox, J. Colloid Interface Sci. 82(2), 458 (1981). doi:10.1016/0021-9797(81)90387-8

    Article  Google Scholar 

  73. G. Lecomte-Nana, V. Coudert, F. Rossignol, A. Lasalle, J. Am. Ceram. Soc. 95(6), 1883 (2012). doi:10.1111/j.1551-2916.2012.05154.x

    Article  Google Scholar 

  74. M. Spannuth, S.G.J. Mochrie, S.S. Peppin, J.S. Wettlaufer, Phys. Rev. E 83(2), 32 (2011). doi:10.1103/PhysRevE.83.021402

    Article  Google Scholar 

  75. M. Spannuth, S.G.J. Mochrie, S.S. Peppin, J.S. Wettlaufer, J. Chem. Phys. 135(22), 224706 (2011). doi:10.1063/1.3665927

    Article  Google Scholar 

  76. D. Koch, L. Andresen, T. Schmedders, G. Grathwohl, J. Sol-Gel Sci. Technol. 26(1–3), 149 (2003). doi:10.1023/A:1020718225164

    Article  Google Scholar 

  77. H. Liu, K. Nakagawa, D. Chaudhary, Y. Asakuma, M.O. Tadé, Chem. Eng. Res. Des. 89(11), 2356 (2011). doi:10.1016/j.cherd.2011.02.023

    Article  Google Scholar 

  78. P.M. Hunger, A.E. Donius, U.G.K. Wegst, Acta Biomater. 9(5), 6338 (2013). doi:10.1016/j.actbio.2013.01.012

    Article  Google Scholar 

  79. C. Stolze, T. Janoschka, S. Flauder, F.A. Müller, M.D. Hager, U.S. Schubert, A.C.S. Appl, Mater. Interfaces 8(36), 23614 (2016). doi:10.1021/acsami.6b05018

    Article  Google Scholar 

  80. F. Bouville, E. Portuguez, Y. Chang, G. Messing, A.J. Stevenson, E. Maire, L. Courtois, S. Deville, J. Am. Ceram. Soc. 97(6), 1736 (2014). doi:10.1111/jace.12976

    Article  Google Scholar 

  81. B.H. Yoon, Y.H. Koh, C.S. Park, H.E. Kim, J. Am. Ceram. Soc. 90(6), 1744 (2007). doi:10.1111/j.1551-2916.2007.01670.x

    Article  Google Scholar 

  82. S.W. Yook, H.E. Kim, Y.H. Koh, Mater. Lett. 63(17), 1502 (2009). doi:10.1016/j.matlet.2009.03.056

    Article  Google Scholar 

  83. Y.M. Soon, K.H. Shin, Y.H. Koh, J.H. Lee, H.E. Kim, Mater. Lett. 63(17), 1548 (2009). doi:10.1016/j.matlet.2009.04.013

    Article  Google Scholar 

  84. X. Liu, M.N. Rahaman, Q. Fu, Acta Biomater. 7(1), 406 (2011). doi:10.1016/j.actbio.2010.08.025

    Article  Google Scholar 

  85. M.C. Yang, J.S. Perng, J. Membr. Sci. 187(1–2), 13 (2001). doi:10.1016/S0376-7388(00)00587-1

    Article  Google Scholar 

  86. S.W. Yook, B.H. Yoon, H.E. Kim, Y.H. Koh, Y.S. Kim, Mater. Lett. 62(30), 4506 (2008). doi:10.1016/j.matlet.2008.08.010

    Article  Google Scholar 

  87. B.H. Yoon, E.J. Lee, H.E. Kim, Y.H. Koh, J. Am. Ceram. Soc. 90(6), 1753 (2007). doi:10.1111/j.1551-2916.2007.01703.x

    Article  Google Scholar 

  88. S.E. Naleway, C.F. Yu, M.M. Porter, A. Sengupta, P.M. Iovine, M.A. Meyers, J. McKittrick, Mater. Des. 71, 62 (2015). doi:10.1016/j.matdes.2015.01.010

    Article  Google Scholar 

  89. Y. Tang, S. Qiu, C. Wu, Q. Miao, K. Zhao, J. Eur. Ceram. Soc. 36(6), 1513 (2016). doi:10.1016/j.jeurceramsoc.2015.12.047

    Article  Google Scholar 

  90. A. Lasalle, C. Guizard, J. Leloup, S. Deville, E. Maire, A. Bogner, C. Gauthier, J. Adrien, L. Courtois, J. Am. Ceram. Soc. 95(2), 799 (2012). doi:10.1111/j.1551-2916.2011.04993.x

    Article  Google Scholar 

  91. K. Nakagawa, S. Surassmo, S.G. Min, M.J. Choi, J. Food Eng. 102(2), 177 (2011). doi:10.1016/j.jfoodeng.2010.08.017

    Article  Google Scholar 

  92. H.M. Tong, I. Noda, C.C. Gryte, Colloid Polym. Sci. 262(7), 589 (1984). doi:10.1007/BF01451524

    Article  Google Scholar 

  93. P.T.N. Nguyen, J. Ulrich, Chem. Eng. Technol. 37(8), 1376 (2014). doi:10.1002/ceat.201400032

    Article  Google Scholar 

  94. P. Nguyen, J. Ulrich, J. Food Eng. 153, 1 (2015). doi:10.1016/j.jfoodeng.2014.12.007

    Article  Google Scholar 

  95. K. Kasraian, P.P. DeLuca, Pharm. Res. 12(4), 484 (1995). doi:10.1023/A:1016233408831

    Article  Google Scholar 

  96. A. Borisova, M. De Bruyn, V.L. Budarin, P.S. Shuttleworth, J.R. Dodson, M.L. Segatto, J.H. Clark, Macromol. Rapid Commun. 36(8), 774 (2015). doi:10.1002/marc.201400680

    Article  Google Scholar 

  97. P.F. Yue, G. Li, J.X. Dan, Z.F. Wu, C.H. Wang, W.F. Zhu, M. Yang, Int. J. Pharm. 475(1–2), 35 (2014). doi:10.1016/j.ijpharm.2014.08.041

    Article  Google Scholar 

  98. G. Ezekwo, H.M. Tong, C.C. Gryte, Water Res. 14(8), 1079 (1980). doi:10.1016/0043-1354(80)90156-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Deville .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deville, S. (2017). Investigating the Freezing of Colloids: Experimental Techniques to Probe Solidification Patterns, Crystal Growth, and Particle Movement. In: Freezing Colloids: Observations, Principles, Control, and Use. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-50515-2_2

Download citation

Publish with us

Policies and ethics