Skip to main content

Freezing Colloids: Natural and Technological Occurrences

  • Chapter
  • First Online:
Freezing Colloids: Observations, Principles, Control, and Use

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The solidification or freezing of colloidal suspensions or colloids is commonly encountered in a variety of natural processes such as the freezing of soils in northern regions and the growth of sea ice, or everyday life and engineering situations such as food engineering (fabrication of ice cream), materials science, cryobiology, filtration or water purification, and the removal of pollutants from waste. It is therefore an amazingly common phenomenon, of stupendous impact in natural, physical, social, and technological environments. The associated costs (degradation of roads) or benefits (climate control, cryopreservation protocols, and tissue engineering scaffolds) are of tremendous importance. This chapter rapidly presents the various occurrences of freezing colloids, their conditions, specificities, and the way the phenomena has been considered and investigated. It will thus provide a good overview of the topics discussed in this book. For the reader specialised in one of these domains, the variety of occurrences presented here should convince him of the benefits of a more generic, interdisciplinary approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term ‘iceball’ refers to the volume of tissue frozen during the procedure.

  2. 2.

    See p. 122.

  3. 3.

    See p. 145.

References

  1. W.C.K. Poon, Science 304(5672), 830 (2004). doi:10.1126/science.1097964

    Article  Google Scholar 

  2. M.G. Worster, J.S. Wettlaufer, J. Phys. Chem. B 101(32), 6132 (1997). doi:10.1021/jp9632448

    Article  Google Scholar 

  3. J. Weissenberger, G. Dieckmann, R. Gradinger, M. Spindler, Limnol. Oceanogr. 7 (1992)

    Google Scholar 

  4. A.J. Wells, J.S. Wettlaufer, S.A. Orszag, Geophys. Res. Lett. 38(4) (2011). doi:10.1029/2010GL046288

  5. K. Yoshimura, T. Inada, S. Koyama, Cryst. Growth Des. 8(7), 2108 (2008). doi:10.1021/cg070251k

    Article  Google Scholar 

  6. H. Trinks, W. Schröder, C.K. Biebricher, Orig. Life Evol. Biosph. 35(5), 429 (2005). doi:10.1007/s11084-005-5009-1

    Article  Google Scholar 

  7. J.P. Ferris, Catalyzed, in Molecular Origin of Life, ed. by A. Brack (Cambridge University Press, Cambridge, 1998), pp. 255–268

    Chapter  Google Scholar 

  8. J.D. Graham, J.T. Roberts, J. Phys. Chem. B 104(5), 978 (2000). doi:10.1021/jp991407x

    Article  Google Scholar 

  9. J.D. Graham, J.T. Roberts, Langmuir 16(8), 3244 (2000)

    Article  Google Scholar 

  10. J. Attwater, A. Wochner, V. Pinheiro, A. Coulson, P. Holliger, Nat. Commun. 1(6), 1 (2010)

    Article  Google Scholar 

  11. A.W. Rempel, J. Glaciol. 56(200), 1122 (2010). doi:10.3189/002214311796406149

    Article  Google Scholar 

  12. S. Kokelj, C. Burn, Proc. Eighth Int. Conf. Permafr. 1, 567 (2003)

    Google Scholar 

  13. A.C. Palmer, P.J. Williams, Can. Geotech. J. 40(5), 1033 (2003). doi:10.1139/t03-044

    Article  Google Scholar 

  14. S. Taber, J. Geol. 37(5), 428 (1929). doi:10.1086/623637

    Article  Google Scholar 

  15. J.J. Beaudoin, C. MacInnis, Cem. Concr. Res. 4(2), 139 (1974). doi:10.1016/0008-8846(74)90128-8

    Article  Google Scholar 

  16. L. Wilen, J. Dash, Phys. Rev. Lett. 74(25), 5076 (1995). doi:10.1103/PhysRevLett.74.5076

    Article  Google Scholar 

  17. J.S. Wettlaufer, M.G. Worster, Annu. Rev. Fluid Mech. 38(1), 427 (2006). doi:10.1146/annurev.fluid.37.061903.175758

    Article  Google Scholar 

  18. E. van Bochove, D. Prévost, F. Pelletier, Soil Sci. Soc. Am. J. 64(5), 1638 (2000). doi:10.2136/sssaj2000.6451638x

    Article  Google Scholar 

  19. D.D. Wynn-williams, N.A. Cabrol, E.A. Grin, R.M. Haberle, C.R. Stoker, Astrobiology 1(2), 165 (2001). doi:10.1089/153110701753198936

    Article  Google Scholar 

  20. S.A. Benner, K.G. Devine, L.N. Matveeva, D.H. Powell, Proc. Natl. Acad. Sci. U. S. A. 97(6), 2425 (2000). doi:10.1073/pnas.040539497

    Article  Google Scholar 

  21. R. Oyarzun, C. Viedma, A. Marrquez, J. Lillo, Terra Nov. 15(4), 238 (2003). doi:10.1046/j.1365-3121.2003.00487.x

    Article  Google Scholar 

  22. M. Sexton, M.E. Madden, A. Swindle, V. Hamilton, B. Bickmore, A.E. Madden, Icarus (2016). doi:10.1016/j.icarus.2016.10.014

    Google Scholar 

  23. W. Gill, J. Fraser, D.C. Carter, Nature 219(5152), 410 (1968). doi:10.1038/219410a0

    Article  Google Scholar 

  24. N.E. Hoffmann, J.C. Bischof, Urology 60(2), 40 (2002). doi:10.1016/S0090-4295(02)01683-7

  25. R. Goel, K. Anderson, J. Slaton, F. Schmidlin, G. Vercellotti, J. Belcher, J.C. Bischof, J. Biomech. Eng. 131(7), 074003 (2009). doi:10.1115/1.3156804

    Article  Google Scholar 

  26. H. Koushafar, L. Pham, C. Lee, B. Rubinsky, J. Surg. Oncol. 66(2), 114 (1997). doi:10.1002/(SICI)1096-9098(199710)66:2<114::AID-JSO8>3.0.CO;2-G

    Article  Google Scholar 

  27. W.F. Rall, G.M. Fahy, Nature 313(6003), 573 (1985). doi:10.1038/313573a0

    Article  Google Scholar 

  28. J.O.M. Karlsson, Science 296(5568), 655d (2002). doi:10.1126/science.296.5568.655d

    Article  Google Scholar 

  29. H. Ishiguro, B. Rubinsky, Cryobiology 31(5), 483 (1994). doi:10.1006/cryo.1994.1059

    Article  Google Scholar 

  30. K.B. Storey, J.M. Storey, Annu. Rev. Ecol. Syst. 27(1), 365 (1996). doi:10.1146/annurev.ecolsys.27.1.365

    Article  Google Scholar 

  31. A.V. Aarset, Comp. Biochem. Physiol. Part A Physiol. 73(4), 571 (1982). doi:10.1016/0300-9629(82)90264-X

    Article  Google Scholar 

  32. J.P. Wolanczyk, K.B. Storey, J.G. Baust, Cryobiology 27(3), 328 (1990)

    Article  Google Scholar 

  33. J. Layne, R.E. Lee, Clim. Res. 5, 53 (1995)

    Article  Google Scholar 

  34. J.M. Storey, K.B. Storey, J. Comp. Physiol. B 156(2), 191 (1985). doi:10.1007/BF00695773

    Article  Google Scholar 

  35. J.R. Layne, J. Therm. Biol. 20(4), 349 (1995). doi:10.1016/0306-4565(94)00069-U

    Article  Google Scholar 

  36. R.E. Lee, J.P. Costanzo, E.C. Davidson, J.R. Layne, J. Therm. Biol. 17(4–5), 263 (1992). doi:10.1016/0306-4565(92)90064-M

    Article  Google Scholar 

  37. M.I. Gibson, Polym. Chem. 1(8), 1141 (2010). doi:10.1039/c0py00089b

    Article  Google Scholar 

  38. R. Drori, Y. Celik, P.L. Davies, I. Braslavsky, J. R. Soc. Interface 11(98), 20140526 (2014). doi:10.1098/rsif.2014.0526

  39. S.P. Graether, M.J. Kuiper, V.K. Walker, Z. Jia, B.D. Sykes, P.L. Davies, Nature 46(6793), 325 (2000)

    Google Scholar 

  40. C.P. Garnham, R.L. Campbell, P.L. Davies, Proc. Natl. Acad. Sci. U. S. A. 108(18), 7363 (2011). doi:10.1073/pnas.1100429108

    Article  Google Scholar 

  41. M. Bar Dolev, R. Bernheim, S. Guo, P.L. Davies, I. Braslavsky, J. R. Soc. Interface 13(121), 20160210 (2016). doi:10.1098/rsif.2016.0210

    Article  Google Scholar 

  42. D. Suzuki, T. Miyamoto, T. Kikawada, M. Watanabe, T. Suzuki, PLOS One 9(1), e86807 (2014). doi:10.1371/journal.pone.0086807

    Article  Google Scholar 

  43. A.E. Delgado, A.C. Rubiolo, LWT - Food Sci. Technol. 38(2), 135 (2005). doi:10.1016/j.lwt.2004.04.015

    Article  Google Scholar 

  44. T. Arunyanart, S. Charoenrein, Carbohydr. Polym. 74(3), 514 (2008). doi:10.1016/j.carbpol.2008.04.002

    Article  Google Scholar 

  45. L. Wang, B. Xie, G. Xiong, W. Wu, J. Wang, Y. Qiao, L. Liao, Food Hydrocoll. 31(1), 61 (2013). doi:10.1016/j.foodhyd.2012.10.004

    Article  Google Scholar 

  46. Z. Xu, Y. Guo, S. Ding, K. An, Z. Wang, Innov. Food Sci. Emerg. Technol. 22, 167 (2014). doi:10.1016/j.ifset.2013.06.005

    Article  Google Scholar 

  47. Y. Ando, Y. Maeda, K. Mizutani, N. Wakatsuki, S. Hagiwara, H. Nabetani, LWT - Food Sci. Technol. 71, 40 (2016). doi:10.1016/j.lwt.2016.03.019

    Article  Google Scholar 

  48. G.G. Palazolo, P.A. Sobral, J.R. Wagner, Food Hydrocoll. 25(3), 398 (2011). doi:10.1016/j.foodhyd.2010.07.008

    Article  Google Scholar 

  49. S. Ghosh, J.N. Coupland, Food Hydrocoll. 22(1), 105 (2008). doi:10.1016/j.foodhyd.2007.04.013

    Article  Google Scholar 

  50. K.V. Ewart, C.L. Hew (eds.), Fish Antifreeze Proteins (World Scientific Publishing Co. Pte. Ltd, Singapore, 2002)

    Google Scholar 

  51. G.L. Fletcher, S.V. Goddard, Y.L. Wu, Chemtech 29(6), 17 (1999)

    Google Scholar 

  52. J. Crilly, A. Russell, A. Cox, D. Cebula, Ind. Eng. Chem. Res. 47(17), 6362 (2008)

    Article  Google Scholar 

  53. C.P. Chu, D.J. Lee, Water Sci. Technol. 38(2 pt 2), 79 (1998). doi:10.1016/S0273-1223(98)00433-8

    Article  Google Scholar 

  54. C. Martel, Water Res. 34(2), 657 (2000). doi:10.1016/S0043-1354(99)00163-3

    Article  Google Scholar 

  55. G. Ezekwo, H.M. Tong, C.C. Gryte, Water Res. 14(8), 1079 (1980). doi:10.1016/0043-1354(80)90156-6

    Article  Google Scholar 

  56. W.T. Hung, W.H. Feng, I.H. Tsai, D.J. Lee, S.G. Hong, Water Res. 31(9), 2219 (1997). doi:10.1016/S0043-1354(97)00067-5

    Article  Google Scholar 

  57. G. Chen, T. Ushida, T. Tateishi, Biomaterials 22(18), 2563 (2001)

    Article  Google Scholar 

  58. J. Zhang, J. Li, R.W. Thring, X. Hu, X. Song, J. Hazard. Mater. 203–204, 195 (2012). doi:10.1016/j.jhazmat.2011.12.016

    Article  Google Scholar 

  59. C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 11(7), 579 (1999). doi:10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.3.CO;2-I

    Article  Google Scholar 

  60. C.P. Chu, W.C. Feng, B.V. Chang, C.H. Chou, D.J. Lee, Water Res. 33(16), 3532 (1999). doi:10.1016/S0043-1354(99)00067-6

    Article  Google Scholar 

  61. G. Hu, J. Li, H. Hou, J. Hazard. Mater. 283, 832 (2015). doi:10.1016/j.jhazmat.2014.10.028

    Article  Google Scholar 

  62. T. Tao, X.F. Peng, D.J. Lee, Chem. Eng. Sci. 61(16), 5369 (2006). doi:10.1016/j.ces.2006.04.019

    Article  Google Scholar 

  63. J. Aroussia, M.J. Safi, J. Chem. Chem. Eng. 6, 215 (2012)

    Google Scholar 

  64. Z. Lu, L. Xu. Freezing Desalination Process (2010)

    Google Scholar 

  65. T. Younos, K.E. Tulou, J. Contemp. Water Res. Educ. 132, 3 (2005). doi:10.1111/j.1936-704X.2005.mp132001002.x

    Article  Google Scholar 

  66. M.S. Rahman, M. Ahmed, X.D. Chen, Sep. Purif. Rev. 35(2), 59 (2006). doi:10.1080/15422110600671734

    Article  Google Scholar 

  67. W. Gao, M. Habib, D. Smith, Desalination 245(1–3), 108 (2009). doi:10.1016/j.desal.2008.06.013

    Article  Google Scholar 

  68. M.S. Rahman, M. Ahmed, X.D. Chen, Int. J. Nucl. Desalin. 2(3), 253 (2007). doi:10.1504/IJND.2007.013549

    Article  Google Scholar 

  69. L. Liu, O. Miyawaki, K. Nakamura, Food Sci. Technol. Int. Tokyo 3(4), 348 (1997). doi:10.3136/fsti9596t9798.3.348

    Article  Google Scholar 

  70. R. Fujioka, L.P. Wang, G. Dodbiba, T. Fujita, Desalination 319, 33 (2013). doi:10.1016/j.desal.2013.04.005

    Article  Google Scholar 

  71. J. Cao, D.D.L. Chung, Cem. Concr. Res. 32(10), 1657 (2002). doi:10.1016/S0008-8846(02)00856-6

    Article  Google Scholar 

  72. W. Sun, Y. Zhang, H. Yan, R. Mu, Cem. Concr. Res. 29(9), 1519 (1999). doi:10.1016/S0008-8846(99)00097-6

    Article  Google Scholar 

  73. Y. Wu, B. Wu, Constr. Build. Mater. 54, 596 (2014). doi:10.1016/j.conbuildmat.2013.12.089

    Article  Google Scholar 

  74. G.G. Litvan, Freeze-thaw durability of porous building materials, in Durability of Building Materials and Components, vol. 691 (ASTM STP, 1980) p. 455

    Google Scholar 

  75. L. Basheer, D.J. Cleland, Constr. Build. Mater. 20(10), 990 (2006). doi:10.1016/j.conbuildmat.2005.06.010

    Article  Google Scholar 

  76. L. Liu, G. Ye, E. Schlangen, H. Chen, Z. Qian, W. Sun, K. Van Breugel, Cem. Concr. Compos. 33(5), 562 (2011). doi:10.1016/j.cemconcomp.2011.03.001

    Article  Google Scholar 

  77. R. Mu, C. Miao, X. Luo, W. Sun, Cem. Concr. Res. 32(7), 1061 (2002). doi:10.1016/S0008-8846(02)00746-9

    Article  Google Scholar 

  78. W. Li, M. Pour-Ghaz, J. Castro, J. Weiss, J. Mater. Civ. Eng. 24, 299 (2012). doi:10.1061/(ASCE)MT.1943-5533.0000383

    Article  Google Scholar 

  79. D.J. Corr, P.J. Monteiro, J. Bastacky, Cem. Concr. Res. 33(10), 1531 (2003). doi:10.1016/S0008-8846(03)00103-0

    Article  Google Scholar 

  80. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, J. Mater. Sci. 26(5), 1137 (1991). doi:10.1007/BF00544448

    Article  Google Scholar 

  81. J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Technol. 123(2), 258 (2002). doi:10.1016/S0924-0136(02)00099-7

    Article  Google Scholar 

  82. R. Sasikumar, M. Kumar, Acta Metall. Mater. 39(11), 2503 (1991). doi:10.1016/0956-7151(91)90065-9

    Article  Google Scholar 

  83. R. Sasikumar, T. Ramamohan, Acta Metall. Mater. 39(4), 517 (1991). doi:10.1016/0956-7151(91)90119-L

    Article  Google Scholar 

  84. L. Zheng, X. Ma, D. Hu, H. Zhang, T. Zhang, Y. Wan, J. Cryst. Growth 318(1), 313 (2011). doi:10.1016/j.jcrysgro.2010.11.141

    Article  Google Scholar 

  85. T. Liu, B. Chen, J.R.G. Evans, Bioinspir. Biomim. 3, 016005 (2008). doi:10.1088/1748-3182/3/1/016005

    Article  Google Scholar 

  86. A. Mühlbauer, V. Diers, A. Waither, J. Cryst. Growth 108, 41 (1991)

    Article  Google Scholar 

  87. H. Aufgebauer, J. Kundin, H. Emmerich, M. Azizi, C. Reimann, J. Friedrich, T. Jauß, T. Sorgenfrei, A. Cröll, J. Cryst. Growth 446, 12 (2016). doi:10.1016/j.jcrysgro.2016.04.032

    Article  Google Scholar 

  88. A.K. Gupta, B.K. Saxena, S.N. Tiwari, S.L. Malhotra, J. Mater. Sci. 27(4), 853 (1992). doi:10.1007/BF01197634

    Article  Google Scholar 

  89. S. Leo, C. Tallón, N. Stone, G.V. Franks, J. Am. Ceram. Soc. 97(10), 3013 (2014). doi:10.1111/jace.13192

    Article  Google Scholar 

  90. M. Mittal, J.A. Roper, C.L. Jackson, G.G. Monaghan, L.F. Francis, J. Colloid Interface Sci. 392(1), 183 (2013). doi:10.1016/j.jcis.2012.10.008

    Article  Google Scholar 

  91. F.A. DiGioia, R.E. Nelson, Ind. Eng. Chem. 45(4), 745 (1953). doi:10.1021/ie50520a028

    Article  Google Scholar 

  92. C.L. Zhao, S. Porzio, A. Smith, H. Ge, H.T. Davis, L.E. Scriven, J. Coatings Technol. Res. 3(2), 109 (2006). doi:10.1007/s11998-006-0013-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Deville .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deville, S. (2017). Freezing Colloids: Natural and Technological Occurrences. In: Freezing Colloids: Observations, Principles, Control, and Use. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-50515-2_1

Download citation

Publish with us

Policies and ethics