Skip to main content

Part of the book series: Wireless Networks ((WN))

  • 635 Accesses

Abstract

In this chapter, we investigate the routing problem in multi-hop wireless networks, whereby link qualities are unknown and time-varying due to fast-fading wireless channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baruch Awerbuch and Robert D. Kleinberg. “Adaptive Routing with End-to-end Feedback: Distributed Learning and Geometric Approaches”. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing. STOC ’04. 2004, pp. 45–53.

    Google Scholar 

  2. Baruch Awerbuch and Robert Kleinberg. “Online Linear Optimization and Adaptive Routing”. In: J. Comput. Syst. Sci. 74.1 (Feb. 2008), pp. 97–114. ISSN: 0022-0000.

    Google Scholar 

  3. F. Cadger et al. “A Survey of Geographical Routing in Wireless Ad- Hoc Networks”. In: Communications Surveys Tutorials, IEEE 15.2 (Second 2013), pp. 621–653. ISSN: 1553-877X.

    Google Scholar 

  4. N. Cesa-Bianchi and G. Lugosi. “Prediction, Learning, and Games”. In: Cambridge University Press. 2006.

    Google Scholar 

  5. Jie Gao et al. “Geometric spanners for routing in mobile networks”. In: Selected Areas in Communications, IEEE Journal on 23.1 (Jan. 2005), pp. 174–185. ISSN: 0733-8716.

    Google Scholar 

  6. Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. “Combinatorial Network Optimization with Unknown Variables: Multi-armed Bandits with Linear Rewards and Individual Observations”. In: EEE/ACM Trans. Netw. 20.5 (Oct. 2012), pp. 1466–1478. ISSN: 1063-6692.

    Google Scholar 

  7. Andráas György et al. “The On-Line Shortest Path Problem Under Partial Monitoring”. In: J. Mach. Learn. Res. 8 (Dec. 2007), pp. 2369– 2403. ISSN: 1532-4435.

    Google Scholar 

  8. Ting He et al. “Endhost-based shortest path routing in dynamic networks: An online learning approach”. In: IEEE INFOCOM’13. Apr. 2013, pp. 2202–2210.

    Google Scholar 

  9. Keqin Liu and Qing Zhao. “Adaptive shortest-path routing under unknown and stochastically varying link states”. In: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2012 10th International Symposium on. May 2012, pp. 232–237.

    Google Scholar 

  10. M. S. Talebi et al. “Stochastic Online Shortest Path Routing: The Value of Feedback”. 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zheng .

Appendix

Appendix

The proof of Theorem 7.1 in Sect. 7.3 is based on some auxiliary results and Theorem 6.9 of [CL06], reproduced below as Theorem 7.3.

Theorem 7.3

Let \(\varPhi (U)=\psi (\sum _{i=1}^{N}\phi (u_i))\), where \(U=(u_1,\ldots ,u_N)\). Consider a selection strategy that selects action \(I_t\) at time t according to distribution \(P_t = \{p_{1,t}, p_{2,t},\ldots , P_{N,t}\}\), whose elements \(p_{i,t}\) are defined as:

$$\begin{aligned} \begin{aligned} p_{i,t}=(1-\gamma _t)\frac{\phi ^{\prime }(R_{i,t-1})}{\sum _{k=1}^{N}\phi ^{\prime }(R_{i,t-1})}+\frac{\gamma _t}{N}, \end{aligned} \end{aligned}$$
(7.10)

where \(R_{i,t-1}=\sum _{s=1}^{t=1}(g(s,i)-g(s,I_s))\).

If the following assumptions hold:

  1. 1.

    \(\sum _{t=1}^{n}\frac{1}{\gamma ^2_t}=o(\frac{n^2}{\ln {n}})\)

  2. 2.

    For all vector \(V_t=(v_{1,t},\ldots ,v_{n,t})\) with \(\mid {v_{i,t}}\mid \le \frac{N}{\gamma _t}\), we have

    $$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{\psi (\phi (n))}\sum _{t=1}^{n}C(V_t)=0, \end{aligned} \end{aligned}$$
    (7.11)

    where

    $$\begin{aligned} C(V_t)=\sup _{U\in {R^N}}\psi ^{\prime }\left( \sum _{i=1}^{N}\phi (u_i)\right) \sum _{i=1}^{N}\phi ^{\prime \prime }(u_i)v^2_{i,t}. \end{aligned}$$
  3. 3.

    For all vectors \(U_t=(u_{1,t},\ldots ,u_{n,t})\), with \(u_{i,t}\le {t}\),

    $$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{\psi (\phi (n))}\sum _{t=1}^{n}\gamma _t\sum _{i=1}^{N}\nabla _i\varPhi (U_t)=0, \end{aligned} \end{aligned}$$
    (7.12)
  4. 4.

    For all vectors \(U_t=(u_{1,t},\ldots ,u_{n,t})\), with \(u_{i,t}\le {t}\),

    $$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\frac{\ln {n}}{\psi (\phi (n))}\sqrt{\sum _{t=1}^{n}\frac{1}{\gamma ^2_t}\left( \sum _{i=1}^{N}\nabla _i\varPhi (U_t)\right) ^2}=0, \end{aligned} \end{aligned}$$
    (7.13)

Then the selection strategy satisfies:

$$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{n}\left( \max _{i=1,\ldots ,N}\sum _{t=1}^{n}g(t,i)-\sum _{t=1}^{n}g(t,I_t)\right) =0. \end{aligned} \end{aligned}$$
(7.14)

Proof of Theorem 7.1

In order to prove Theorem 7.1, we show that the selected parameters \(\gamma _t=t^{-\frac{1}{3}}\) and \(\eta _t=\frac{\gamma ^3_t}{N^2}\) satisfy (1)–(4) in Theorem 7.3.

  1. 1.

    For \(\gamma _t=t^{-\frac{1}{3}}\), we have

    $$\begin{aligned} \begin{aligned} \sum _{t=1}^{n}\frac{1}{\gamma ^2_t}=\sum _{t=1}^{n}t^{\frac{2}{3}}=H_n\left[ \frac{-2}{3}\right] . \end{aligned} \end{aligned}$$
    (7.15)

    Then,

    $$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\frac{\ln {n}}{n^2}\sum _{t=1}^{n}\gamma ^2_t=\lim _{n\rightarrow \infty }\frac{\ln {n}}{n^2}H_n\left[ \frac{-2}{3}\right] =0. \end{aligned} \end{aligned}$$
    (7.16)
  2. 2.

    For \(\psi (x)=\frac{1}{\eta _t}\ln {x}\) and \(\phi (x)=\exp (\eta _t{x})\), we obtain

    $$\begin{aligned} \begin{aligned} C(V_t)=sup\left( \eta _t\sum _{i=1}{N}v^2_{i,t}\right) =\frac{\eta _tN^3}{\gamma ^2_t}. \end{aligned} \end{aligned}$$
    (7.17)

    Hence,

    $$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{\psi (\phi (n))}\sum _{t=1}^{n}C(V_t)&=\lim _{n\rightarrow \infty }\frac{1}{n} \sum _{t=1}^{n}t^{-\frac{1}{3}}\\&=\lim _{n\rightarrow \infty }\frac{1}{n}H_n\left[ \frac{1}{3}\right] =0. \end{aligned} \end{aligned}$$
    (7.18)
  3. 3.

    For \(\varPhi (U)=\frac{1}{\eta _t}\ln \left( \sum _{i=1}^{N}\exp (\eta _t{u_i})\right) \), \(\nabla _i\phi (U_t)\) is given by:

    $$\begin{aligned} \begin{aligned} \nabla _i\phi (U_t)=\frac{\exp (\eta _t{u_i})}{\sum _{i=1}^{N}\exp (\eta _tu_i)}. \end{aligned} \end{aligned}$$
    (7.19)

    Therefore,

    $$\begin{aligned} \begin{aligned}&\lim _{n\rightarrow \infty }\frac{1}{\psi (\phi (n))}\sum _{t=1}^{n}\gamma _t \sum _{i=1}^{N}\nabla _i\phi (U_t)=\\&\lim _{n\rightarrow \infty }\frac{1}{n}\sum _{t=1}^{n}t^{-\frac{1}{3}}\sum _{i=1}{N}\frac{\exp (\eta _tu_i)}{\sum _{i=1}^{N}\exp (\eta _tu_i)}=\\&\lim _{n\rightarrow \infty }\frac{1}{n}H_n\left[ \frac{1}{3}\right] =0. \end{aligned} \end{aligned}$$
    (7.20)
  4. 4.

    By substituting (7.19) into (7.13), we obtain (4).

Therefore, (7.14) ensures since all assumptions (1)–(4) are held, which completes the proof of Theorem 7.1.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Zheng, R., Hua, C. (2016). Online Routing in Multi-hop Wireless Networks. In: Sequential Learning and Decision-Making in Wireless Resource Management. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-50502-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50502-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50501-5

  • Online ISBN: 978-3-319-50502-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics