Skip to main content

Classification

  • Chapter
  • First Online:
Processing of Hyperspectral Medical Images

Part of the book series: Studies in Computational Intelligence ((SCI,volume 682))

Abstract

The acquired image features such as mean brightness, contrast, energy and homogeneity can be used for machine learning and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ye F, Chen ZH, Chen J, Liu F, Zhang Y, Fan QY, Wang L Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China. Chin Med J (Engl). 2016 20th May;129(10):1193–1199. doi:10.4103/0366-6999.181955.

  2. Heikkilä P, Forma L, Korppi M. High-flow oxygen therapy is more cost-effective for bronchiolitis than standard treatment-a decision-tree analysis. Pediatr Pulmonol. 2016 May 5

    Google Scholar 

  3. Kadi I, Idri A. Cardiovascular Dysautonomias Diagnosis Using Crisp and Fuzzy Decision Tree: A Comparative Study. Stud Health Technol Inform. 2016;223:1–8.

    Google Scholar 

  4. Kraszewska-Głomba B, Szymańska-Toczek Z, Szenborn L. Procalcitonin and C-reactive protein-based decision tree model for distinguishing PFAPA flares from acute infections. Bosn J Basic Med Sci. 2016 Mar 10;16(2):157–61. doi:10.17305/bjbms.2016.974.

  5. Fernández L, Mediano P, García R, Rodríguez JM, Marín M. Risk Factors Predicting Infectious Lactational Mastitis: Decision Tree Approach versus Logistic Regression Analysis. Matern Child Health J. 2016 Apr 11. [Epub ahead of print]

    Google Scholar 

  6. Garcia RJ, von Winterfeldt D. Defender-Attacker Decision Tree Analysis to Combat Terrorism. Risk Anal. 2016 Apr 1. doi:10.1111/risa.12574. [Epub ahead of print]

  7. Bamber JH, Evans SA. The value of decision tree analysis in planning anaesthetic care in obstetrics. Int J Obstet Anesth. 2016 Feb 27. pii: S0959-289X(16)00036-4. doi:10.1016/j.ijoa.2016.02.007. [Epub ahead of print] Review.

  8. Leach HJ, O’Connor DP, Simpson RJ, Rifai HS, Mama SK, Lee RE. An exploratory decision tree analysis to predict cardiovascular disease risk in African American women. Health Psychol. 2016 Apr;35(4):397–402. doi:10.1037/hea0000267.

  9. Wylie CE, Shaw DJ, Verheyen KL, Newton JR. Decision-tree analysis of clinical data to aid diagnostic reasoning for equine laminitis: a cross-sectional study. Vet Rec. 2016 Apr 23;178(17):420. doi:10.1136/vr.103588. Epub 2016 Mar 11.

  10. Oksel C, Winkler DA, Ma CY, Wilkins T, Wang XZ. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches. Nanotoxicology. 2016 Apr 6:1–12. [Epub ahead of print]

    Google Scholar 

  11. Montorsi F, Oelke M, Henneges C, Brock G, Salonia A, d’Anzeo G, Rossi A, Mulhall JP, Büttner H. Exploratory Decision-Tree Modeling of Data from the Randomized REACTT Trial of Tadalafil Versus Placebo to Predict Recovery of Erectile Function After Bilateral Nerve-Sparing Radical Prostatectomy. Eur Urol. 2016 Mar 3. pii: S0302-2838(16)00214-1. doi:10.1016/j.eururo.2016.02.036. [Epub ahead of print]

  12. Baneshi MR, Haghdoost AA, Zolala F, Nakhaee N, Jalali M, Tabrizi R, Akbari M. Can Religious Beliefs be a Protective Factor for Suicidal Behavior? A Decision Tree Analysis in a Mid-Sized City in Iran, 2013. J Relig Health. 2016 Feb 29. [Epub ahead of print]

    Google Scholar 

  13. Medeiros LB, Trigueiro DR, Silva DM, Nascimento JA, Monroe AA, Nogueira JA, Leadebal OD. Integration of health services in the care of people living with aids: an approach using a decision tree Cien Saude Colet. 2016 Feb;21(2):543–552. English, Portuguese.

    Google Scholar 

  14. Hashem S, Esmat G, Elakel W, Habashy S, Abdel Raouf S, Darweesh S, Soliman M, Elhefnawi M, El-Adawy M, ElHefnawi M. Accurate Prediction of Advanced Liver Fibrosis Using the Decision Tree Learning Algorithm in Chronic Hepatitis C Egyptian Patients. Gastroenterol Res Pract. 2016;2016:2636390. doi:10.1155/2016/2636390. Epub 2016 Jan 6.

  15. Collet JF, Lacave R, Hugonin S, Poulot V, Tassart M, Fajac A. BRAF V600E detection in cytological thyroid samples: A key component of the decision tree for surgical treatment of papillary thyroid carcinoma. Head Neck. 2016 Feb 8. doi:10.1002/hed.24393. [Epub ahead of print]

  16. Kang Y, McHugh MD, Chittams J, Bowles KH. Utilizing Home Healthcare Electronic Health Records for Telehomecare Patients With Heart Failure: A Decision Tree Approach to Detect Associations With Rehospitalizations. Comput Inform Nurs. 2016 Apr;34(4):175–82. doi:10.1097/CIN.0000000000000223.

  17. Owen EB, Woods CR, O’Flynn JA, Boone MC, Calhoun AW, Montgomery VL. A Bedside Decision Tree for Use of Saline With Endotracheal Tube Suctioning in Children. Crit Care Nurse. 2016 Feb;36(1):e1–e10. doi:10.4037/ccn2016358.

  18. Asafu-Adjei JK, Betensky RA.A Pairwise Naïve Bayes Approach to Bayesian Classification. Intern J Reference Recognit Artif Intell. 2015 Oct 1;29(7). pii: 1550023.

    Google Scholar 

  19. Chen C, Zhang G, Yang J, Milton JC, Alcántara AD. An explanatory analysis of driver injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid classifier. Accid Anal Prev. 2016 May;90:95–107.

    Google Scholar 

  20. Geng H, Lu T, Lin X, Liu Y, Yan F. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier. Biochem Res Int. 2015;2015:978193.

    Google Scholar 

  21. Miasnikof P, Giannakeas V, Gomes M, Aleksandrowicz L, Shestopaloff AY, Alam D, Tollman S, Samarikhalaj A, Jha P. Naive Bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths. BMC Med. 2015 Nov 25;13:286.

    Google Scholar 

  22. Griffis JC, Allendorfer JB, Szaflarski JP. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J Neurosci Methods. 2016 Jan 15;257:97–108.

    Google Scholar 

  23. Wang M, Zuo W, Wang Y. A Multilayer Naïve Bayes Model for Analyzing User’s Retweeting Sentiment Tendency. Comput Intell Neurosci. 2015;2015:510281.

    Google Scholar 

  24. Marucci-Wellman HR, Lehto MR, Corns HL.A practical tool for public health surveillance: Semi-automated coding of short injury narratives from large administrative databases using Naïve Bayes algorithms. Accid Anal Prev. 2015 Nov;84:165–76. doi:10.1016/j.aap.2015.06.014. Epub 2015 Sep 26.

  25. Carvajal G, Roser DJ, Sisson SA, Keegan A, Khan SJ. Modelling pathogen log10 reduction values achieved by activated sludge treatment using naïve and semi naïve Bayes network models. Water Res. 2015 Nov 15;85:304–15. doi:10.1016/j.watres.2015.08.035. Epub 2015 Aug 21.

  26. Dou Y, Guo X, Yuan L, Holding DR, Zhang C. Differential Expression Analysis in RNA-Seq by a Naive Bayes Classifier with Local Normalization. Biomed Res Int. 2015;2015:789516.

    Google Scholar 

  27. Pogodin PV, Lagunin AA, Filimonov DA, Poroikov VV. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach. SAR QSAR Environ Res. 2015;26(10):783–93.

    Google Scholar 

  28. Waleska Simões P, Mazzuchello LL, Toniazzo de Abreu LL, Garcia D, dos Passos MG, Venson R, Bisognin Ceretta L, Veiga Silva AC, da Rosa MI, Martins PJ. A Comparative Study of Bayes Net, Naive Bayes and Averaged One-Dependence Estimators for Osteoporosis Analysis. Stud Health Technol Inform. 2015;216:1075.

    Google Scholar 

  29. Minnier J, Yuan M, Liu JS, Cai T.Risk Classification with an Adaptive Naive Bayes Kernel Machine Model. J Am Stat Assoc. 2015 Apr 22;110(509):393–404.

    Google Scholar 

  30. Zhang H, Yu P, Zhang TG, Kang YL, Zhao X, Li YY, He JH, Zhang J. In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method. Mol Divers. 2015 Nov;19(4):945–53.

    Google Scholar 

  31. Prinyakupt J, Pluempitiwiriyawej C. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. Biomed Eng Online. 2015 Jun 30;14:63. doi:10.1186/s12938-015-0037-1.

  32. Close ME, Abraham P, Humphries B, Lilburne L, Cuthill T, Wilson S. Predicting groundwater redox status on a regional scale using linear discriminant analysis. J Contam Hydrol. 2016 Apr 29;191:19–32.

    Google Scholar 

  33. Wu D, Fu X, Wen Y, Liu B, Deng Z, Dai L, Tan D. High-resolution melting combines with Bayes discriminant analysis: a novel hepatitis C virus genotyping method. Clin Exp Med. 2016 May 13.

    Google Scholar 

  34. McDonald LS, Panozzo JF, Salisbury PA, Ford R. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features. PLoS One. 2016 May 13;11(5):e0155523.

    Google Scholar 

  35. Han B, Peng H, Yan H. Identification of Medicinal Mugua Origin by Near Infrared Spectroscopy Combined with Partial Least-squares Discriminant Analysis. Pharmacogn Mag. 2016 Apr-Jun;12(46):93–7.

    Google Scholar 

  36. Mandelkow H, de Zwart JA, Duyn JH. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli. Front Hum Neurosci. 2016 Mar 31;10:128.

    Google Scholar 

  37. Amores-Ampuero A, Alemán I. Comparison of cranial sex determination by discriminant analysis and logistic regression. Anthropol Anz. 2016 Apr 5:1–8.

    Google Scholar 

  38. Abbruzzo A, Tamburo E, Varrica D, Dongarrà G, Mineo A. Penalized linear discriminant analysis and Discrete AdaBoost to distinguish human hair metal profiles: The case of adolescents residing near Mt. Etna. Chemosphere. 2016 Jun;153:100–6.

    Google Scholar 

  39. Utkin LV, Chekh AI, Zhuk YA. Binary classification SVM-based algorithms with interval-valued training data using triangular and Epanechnikov kernels. Neural Netw. 2016 Apr 27;80:53–66.

    Google Scholar 

  40. Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway L, Beer MA. gkmSVM: an R package for gapped-kmer SVM. Bioinformatics. 2016 Apr 19. pii: btw203.

    Google Scholar 

  41. Lee D. LS-GKM: a new gkm-SVM for large-scale datasets. Bioinformatics. 2016 Mar 15. pii: btw142.

    Google Scholar 

  42. Wang X, Du H, Tan JOnline Fault Diagnosis for Biochemical Process Based on FCM and SVM. Interdiscip Sci. 2016 Apr 29.

    Google Scholar 

  43. Wang MY, Li P, Qiao PL. The Virtual Screening of the Drug Protein with a Few Crystal Structures Based on the Adaboost-SVM. Comput Math Methods Med. 2016;2016:4809831.

    Google Scholar 

  44. Sun H, Pan P, Tian S, Xu L, Kong X, Li Y, Dan Li, Hou T. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery. Sci Rep. 2016 Apr 22;6:24817.

    Google Scholar 

  45. Astorino A, Fuduli A. The Proximal Trajectory Algorithm in SVM Cross Validation. IEEE Trans Neural Netw Learn Syst. 2016 May;27(5):966–77.

    Google Scholar 

  46. Kong Y, Qu D, Chen X, Gong YN, Yan A. Self-Organizing Map (SOM) and Support Vector Machine (SVM) Models for the Prediction of Human Epidermal Growth Factor Receptor (EGFR/ ErbB-1) Inhibitors. Comb Chem High Throughput Screen. 2016;19(5):400–11.

    Google Scholar 

  47. Huang X, Shi L, Suykens JA. Solution Path for Pin-SVM Classifiers With Positive and Negative Ï„ Values. IEEE Trans Neural Netw Learn Syst. 2016 Apr 8.

    Google Scholar 

  48. Bogaarts JG, Gommer ED, Hilkman DM, van Kranen-Mastenbroek VH, Reulen JP. Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection. Med Biol Eng Comput. 2016 Mar 31.

    Google Scholar 

  49. Peker M. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM. J Med Syst. 2016 May;40(5):116.

    Google Scholar 

  50. Kieslich CA, Smadbeck J, Khoury GA, Floudas CA. conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure. J Chem Inf Model. 2016 Mar 28;56(3):455–61.

    Google Scholar 

  51. Ju Z, Cao JZ, Gu H. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC. J Theor Biol. 2016 May 21;397:145–50.

    Google Scholar 

  52. Foster, K.R., Koprowski, R., Skufca, J.D.: Machine learning, medical diagnosis, and biomedical engineering research—commentary. Biomed. Eng. Online 13, 94 (2014).

    Google Scholar 

  53. Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics. 2010;26(3):440–443.

    Google Scholar 

  54. Ennett CM, Frize M. Selective Sampling to Overcome Skewed a priori Probabilities. Proceed AMIA Symposium. 2000. pp. 225–229

    Google Scholar 

  55. Steyerberg EW, Bleeker SE, Moll HA, Grobbee DE, Moons KG. Internal and external validation of predictive models: a simulation study of bias and precision in small samples. J Clin Epidemiol. 2003;56(5):441–447

    Google Scholar 

  56. Cyran KA, Kawulok J, Kawulok M, Stawarz M, Michalak M, Pietrowska M, Polańska J. Support Vector Machines in Biomedical and Biometrical Applications. In Emerging Paradigms in Machine Learning. Springer Berlin Heidelberg. 2013;13:379–417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Koprowski, R. (2017). Classification. In: Processing of Hyperspectral Medical Images. Studies in Computational Intelligence, vol 682. Springer, Cham. https://doi.org/10.1007/978-3-319-50490-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50490-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50489-6

  • Online ISBN: 978-3-319-50490-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics