Skip to main content

Argumentation for Knowledge Representation, Conflict Resolution, Defeasible Inference and Its Integration with Machine Learning

  • Chapter
  • First Online:
Machine Learning for Health Informatics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9605))

Abstract

Modern machine Learning is devoted to the construction of algorithms and computational procedures that can automatically improve with experience and learn from data. Defeasible argumentation has emerged as sub-topic of artificial intelligence aimed at formalising common-sense qualitative reasoning. The former is an inductive approach for inference while the latter is deductive, each one having advantages and limitations. A great challenge for theoretical and applied research in AI is their integration. The first aim of this chapter is to provide readers informally with the basic notions of defeasible and non-monotonic reasoning. It then describes argumentation theory, a paradigm for implementing defeasible reasoning in practice as well as the common multi-layer schema upon which argument-based systems are usually built. The second aim is to describe a selection of argument-based applications in the medical and health-care sectors, informed by the multi-layer schema. A summary of the features that emerge from the applications under review is aimed at showing why defeasible argumentation is attractive for knowledge-representation, conflict resolution and inference under uncertainty. Open problems and challenges in the field of argumentation are subsequently described followed by a future outlook in which three points of integration with machine learning are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3, 1–13 (2016)

    Article  Google Scholar 

  2. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive Machine Learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_6

    Chapter  Google Scholar 

  3. Gomez, S.A., Chesnevar, C.I.: Integrating defeasible argumentation with fuzzy art neural network for pattern classification. J. Comp. Sci. Technol. 4(1), 45–51 (2004)

    Google Scholar 

  4. Baroni, P., Guida, G., Mussi, S.: Full nonmonotonicity: a new perspective in defeasible reasoning. In: ESIT 1997, European Symposium on Intelligent Techniques, pp. 58–62 (1997)

    Google Scholar 

  5. Longo, L., Dondio, P.: Defeasible reasoning and argument-based medical systems: an informal overview. In: 27th International Symposium on Computer-Based Medical Systems, pp. 376–381. IEEE, New York (2014)

    Google Scholar 

  6. Toni, F.: Argumentative agents. In: The Multiconference on Computer Science and Information Technology, pp. 223–229 (2010)

    Google Scholar 

  7. Longo, L., Kane, B., Hederman, L.: Argumentation theory in health care. In: Proceedings of CBMS 2012, The 25th IEEE International Symposium on Computer-Based Medical Systems, June 20–22, Rome, Italy, pp. 1–6 (2012)

    Google Scholar 

  8. Longo, L.: Formalising Human Mental Workload as a Defeasible Computational Concept. PhD thesis, Trinity College Dublin (2014)

    Google Scholar 

  9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bench-Capon, T.J., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rahwan, I., McBurney, P.: Argumentation technology (guest editors). IEEE Intell. Syst. 22(6), 21–23 (2007)

    Article  Google Scholar 

  12. Matt, P.A., Morgem, M., Toni, F.: Combining statistics and arguments to compute trust. In: International Conference on Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  13. Dondio, P., Longo, L.: Computing trust as a form of presumptive reasoning. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. I, Warsaw, Poland, August 11–14, pp. 274–281 (2014)

    Google Scholar 

  14. Longo, L.: A defeasible reasoning framework for human mental workload representation and assessment. Behav. Inf. Technol. 34(8), 758–786 (2015)

    Article  Google Scholar 

  15. Krause, P., Ambler, S., Elvang-Gransson, M., Fox, J.: A logic of argumentation for reasoning under uncertainty. Comput. Intell. 11(1), 113–131 (1995)

    Article  MathSciNet  Google Scholar 

  16. Bentahar, J., Moulin, B., Blanger, M.: A taxonomy of argumentation models used for knowledge representation. Artif. Intell. Rev. 33(3), 211–259 (2010)

    Article  Google Scholar 

  17. Grasso, F.: Towards a framework for rhetorical argumentation. In: Proceedings of the 6th Workshop on the Semantics and Pragmatics of Dialogue, pp. 53–60 (2002)

    Google Scholar 

  18. Pasquier, P., Rahwanm, I., Dignum, F., Sonenberg, L.: Argumentation and persuasion in the cognitive coherence theory. In: The 1st International Conference on Computational Models of Argument, pp. 223–234 (2006)

    Google Scholar 

  19. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 219–318. Springer, Heidelberg (2002)

    Google Scholar 

  20. Toulmin, S.: The use of argument. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  21. Walton, D.: Argumentation Schemes for Presumptive Reasoning (Studies in Argumentation Theory). Lawrence Erlbaum Associates, Inc., Hillsdale (1996)

    Google Scholar 

  22. Reed, C., Walton, D.: Argumentation schemes in argument-as-process and argument-as-product. In: Proceedings of the Conference Celebrating Informal Logic, vol. 25 (2003)

    Google Scholar 

  23. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument and Comput. 1(2), 93–124 (2011)

    Article  Google Scholar 

  24. Pollock, J.L.: Justification and defeat. Artif. Intell. 67(2), 377–407 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martínez, D.C., García, A., Simari, G.R.: Strong and weak forms of abstract argument defense. In: Proceedings of the 2008 Conference on Computational Models of Argument: Proceedings of COMMA 2008, pp. 216–227. IOS Press (2008)

    Google Scholar 

  26. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9–10), 901–934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pollock, J.L.: Defeasible reasoning. Cognitive Sci. 11(4), 481–518 (1987)

    Article  Google Scholar 

  29. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. J. Appl. Non-Class. Logics 7, 25–75 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1–3), 197–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bench-Capon, T.J.: Persuasion in practical argument using value-based argumentation frameworks. J. Logic Comput. 13(3), 429–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaci, S., Labreuche, C.: Argumentation framework with fuzzy preference relations. In: 13th International Conference on Information Processing and Management of Uncertainty, pp. 554–563 (2010)

    Google Scholar 

  33. Martinez, D.C., Garcia, A.J., Simari, G.R.: An abstract argumentation framework with varied-strength attacks. In: International Conference on Principles of Knowledge Representation and Reasoning, pp. 135–143 (2008)

    Google Scholar 

  34. Janssen, J., De Cock, M., Vermeir, D.: Fuzzy argumentation frameworks. In: Information Processing and Management of Uncertainty in Knowledge-based Systems, pp. 513–520, June 2008

    Google Scholar 

  35. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zadeh, L.A.: Fuzzy Sets, Fuzzy Logic, Fuzzy Systems. World Scientific Press (1966)

    Google Scholar 

  37. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29184-5_1

    Chapter  Google Scholar 

  38. Matt, P.-A., Toni, F.: A game-theoretic measure of argument strength for abstract argumentation. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 285–297. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87803-2_24

    Chapter  Google Scholar 

  39. Vreeswijk, G.: Defeasible dialectics: a controversy-oriented approach towards defeasible argumentation. J. Logic Comput. 3, 3–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

    Article  Google Scholar 

  41. Wu, Y., Caminada, M., Podlaszewski, M.: A labelling based justification status of arguments. Stud. Logic 3(4), 12–29 (2010). 13th International Workshop on Non-Monotonic Reasoning

    Google Scholar 

  42. Dung, P.M., Mancarellab, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171(10–15), 642–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Caminada, M.W.A.: A labelling approach for ideal and stage semantics. Argument Comput. 2(1), 1–21 (2006)

    Article  Google Scholar 

  44. Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Logic Comput. 22(5), 1207–1254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Caminada, M.W.A.: An algorithm for stage semantics. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.): Frontiers in Artificial Intelligence and Applications, Proceedings of the 3rd International Conference on Computational Models of Argument (COMMA 2010), vol. 216, pp. 147–158. IOS Press (2010)

    Google Scholar 

  46. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks. Logic. Comput. 9(2), 215–261 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Baroni, M., Giacomin, M., Guida, G.: Scc-recursiveness: a general schema for argumentation semantics. Artif. Intell. 168(1–2), 165–2010 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Simari, G., Rahwan, I. (eds.): Argumentation in Artificial Intelligence, pp. 25–44. Springer, Heidelberg (2009)

    Google Scholar 

  49. Konieczny, S., Marquis, P., Vesic, S.: On supported inference and extension selection in abstract argumentation frameworks. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS (LNAI), vol. 9161, pp. 49–59. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20807-7_5

    Chapter  Google Scholar 

  50. Coste-Marquis, S., Konieczny, S., Marquis, P., Akli Ouali, M.: Selecting extensions in weighted argumentation frameworks. In: Computational Models of Argument, COMMA (2012)

    Google Scholar 

  51. Bryant, D., Krause, P.: A review of current defeasible reasoning implementations. Knowl. Eng. Rev. 23(3), 227–260 (2008)

    Article  Google Scholar 

  52. Fox, J., Glasspool, D., Grecu, D., Modgil, S., South, M., Patkar, V.: Argumentation-based inference and decision making-a medical perspective. IEEE Intell. Syst., 21–23 (2007)

    Google Scholar 

  53. Fox, J., Black, L., Glasspool, D., Modgil, S., Oettinger, A., Patkar, V., Williams, M.: Towards a general model for argumentation services. In: AAAI Spring Symposium Series (2006)

    Google Scholar 

  54. Glasspool, D., Fox, J., Oettinger, A., Smith-Spark, J.: Argumentation in decision support for medical care planning for patients and clinicians. In: AAAI Spring Symposium: Argumentation for Consumers of Healthcare, pp. 58–63 (2006)

    Google Scholar 

  55. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artif. Intell. 133, 233–282 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chang, C.F., Miller, A., Ghose, A.: Mixed-initiative argumentation: group decision support in medicine. In: Kostkova, P. (ed.) eHealth 2009. LNICSSITE, vol. 27, pp. 43–50. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11745-9_8

    Chapter  Google Scholar 

  57. Grando, M.A., Moss, L., Sleeman, D., Kinsella, J.: Argumentation-logic for creating and explaining medical hypotheses. Artif. Intell. Med 58(1), 1–13 (2013)

    Article  Google Scholar 

  58. Gorogiannis, N., Hunter, A., Patkar, V., Williams, M.: Argumentation about treatment efficacy. In: Riaño, D., Teije, A., Miksch, S., Peleg, M. (eds.) KR4HC 2009. LNCS (LNAI), vol. 5943, pp. 169–179. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11808-1_14

    Chapter  Google Scholar 

  59. Williams, M., Hunter, A.: Harnessing ontologies for argument-based decision-making in breast cancer. In: ICTAI (2), pp. 254–261 (2007)

    Google Scholar 

  60. Longo, L., Hederman, L.: Argumentation theory for decision support in health-care: a comparison with machine learning. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS (LNAI), vol. 8211, pp. 168–180. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02753-1_17

    Chapter  Google Scholar 

  61. Tolchinsky, P., Cortes, U., Modgil, S., Caballero, F., Lopez-Navidad, A.: Increasing human-organ transplant availability: argumentation-based agent deliberation. IEEE Intell. Syst. 21(6), 30–37 (2006)

    Article  Google Scholar 

  62. Patkar, V., Hurt, C., Steele, R., Love, S., Purushotham, A., Williams, M., Thomson, R., Fox, J.: Evidence-based guidelines and decision support services: a discussion and evaluation in triple assessment of suspected breast cancer. Br. J. Cancer 95(11), 1490–1496 (2006)

    Article  Google Scholar 

  63. Fox, J., Das, S.: Safe and Sound: Artificial Intelligence in Hazardous Applications, 1st edn. AAAI Press (2000)

    Google Scholar 

  64. Hunter, A., Williams, M.: Argumentation for aggregating clinical evidence. In: ICTAI (1), pp. 361–368 (2010)

    Google Scholar 

  65. Prakken, H.: Ai & law, logic and argument schemes. Argumentation (Special Issue on The Toulmin Model Today) 19, 303–320 (2005)

    Google Scholar 

  66. Jones, G.R.: Organizational Theory, Design, and Change: Text and Cases, 6th edn. Pearson Prentice Hall, Upper Saddle River, NJ (2010)

    Google Scholar 

  67. Daft, R.L.: Organization Theory and Design, 9th edn. Thomson South-Western, Mason, OH (2007)

    Google Scholar 

  68. Rapoport, A.: Decision Theory and Decision Behaviour. Springer (1989)

    Google Scholar 

  69. Longo, L., Rusconi, F., Noce, L., Barrett, S.: The importance of human mental workload in web-design. In: 8th International Conference on Web Information Systems and Technologies, pp. 403–409, April 2012

    Google Scholar 

  70. Longo, L.: Formalising human mental workload as non-monotonic concept for adaptive and personalised web-design. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 369–373. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31454-4_38

    Chapter  Google Scholar 

  71. Longo, L., Dondio, P.: On the relationship between perception of usability and subjective mental workload of web interfaces. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015, Singapore, December 6–9, vol. I, pp. 345–352 (2015)

    Google Scholar 

  72. Dondio, P., Longo, L.: Trust-based techniques for collective intelligence in social search systems. In: Bessis, N., Xhafa, F. (eds.) Next Generation Data Technologies for CCI, SCI, vol. 352, pp. 113–135. Springer, Heidelberg (2011)

    Google Scholar 

  73. Longo, L., Dondio, P., Barrett, S.: Enhancing social search: a computational collective intelligence model of behavioural traits, trust and time. Trans. Comput. Collective Intell. 2, 46–69 (2010)

    Google Scholar 

  74. Luca, L., Stephen, B., Pierpaolo, D.: Information foraging theory as a form of collective intelligence for social search. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 63–74. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04441-0_5

    Chapter  Google Scholar 

  75. Možina, M., Žabkar, J., Bratko, I.: Argument based machine learning. Artif. Intell. 171(10–15), 922–937 (2007). Argumentation in Artificial Intelligence

    MathSciNet  MATH  Google Scholar 

  76. Lippi, M., Torroni, P.: Argument mining: a machine learning perspective. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS (LNAI), vol. 9524, pp. 163–176. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28460-6_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Longo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Longo, L. (2016). Argumentation for Knowledge Representation, Conflict Resolution, Defeasible Inference and Its Integration with Machine Learning. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics