Skip to main content

Deep Learning Trends for Focal Brain Pathology Segmentation in MRI

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9605))

Abstract

Segmentation of focal (localized) brain pathologies such as brain tumors and brain lesions caused by multiple sclerosis and ischemic strokes are necessary for medical diagnosis, surgical planning and disease development as well as other applications such as tractography. Over the years, attempts have been made to automate this process for both clinical and research reasons. In this regard, machine learning methods have long been a focus of attention. Over the past two years, the medical imaging field has seen a rise in the use of a particular branch of machine learning commonly known as deep learning. In the non-medical computer vision world, deep learning based methods have obtained state-of-the-art results on many datasets. Recent studies in computer aided diagnostics have shown deep learning methods (and especially convolutional neural networks - CNN) to yield promising results. In this chapter, we provide a survey of CNN methods applied to medical imaging with a focus on brain pathology segmentation. In particular, we discuss their characteristic peculiarities and their specific configuration and adjustments that are best suited to segment medical images. We also underline the intrinsic differences deep learning methods have with other machine learning methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that the BRATS organizers released a dataset in 2014 but quickly removed it from the web. This version of the dataset is no longer available.

  2. 2.

    Using stride of n means that every n pixel will be mapped to 1 pixel in the label map (assuming the model has one layer). This causes the model to loose pixel level accuracy if full image prediction is to be used at test time. One way to deal with this issue is presented by Pinheiro et al. [62]. Alternatively we can use stride of 1 every where in the model.

  3. 3.

    In the literature this way of up sampling is some times wrongly referred to as deconvolution.

  4. 4.

    Valid mode is when kernel and input have complete overlap.

  5. 5.

    Full mode is when minimum overlap is a sufficient condition for applying convolution.

References

  1. Isles challenge 2015: Ischemic stroke lesion segmentation. http://www.isles-challenge.org/ISLES2015/. Accessed 11 June 2016

  2. Virtual skeleton database. http://www.virtualskeleton.ch/. Accessed 11 June 2016

  3. Ali, H., Elmogy, M., El-Daydamony, E., Atwan, A.: Multi-resolution mri brain image segmentation based on morphological pyramid and fuzzy c-mean clustering. Arab. J. Sci. Eng. 40(11), 3173–3185 (2015)

    Article  Google Scholar 

  4. Alvarez, J.M., Gevers, T., LeCun, Y., Lopez, A.M.: Road scene segmentation from a single image. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 376–389. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_28

    Chapter  Google Scholar 

  5. Arevalo, J., Gonzalez, F.A., Ramos-Pollan, R., Oliveira, J.L., Guevara Lopez, M.A.: Convolutional neural networks for mammography mass lesion classification. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 797–800. IEEE (2015)

    Google Scholar 

  6. Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davazikos, C.: Segmentation of gliomas in multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 5–12 (2015)

    Google Scholar 

  7. Bar, Y., Diamant, I., Wolf, L., Greenspan, H.: Deep learning with non-medical training used for chest pathology identification. In: SPIE Medical Imaging, p. 94140V. International Society for Optics and Photonics (2015)

    Google Scholar 

  8. Bauer, S., et al.: A survey of MRI-based medical image analysis for brain tumor studies. Phy. Med. Biol. 58(13), 97–129 (2013)

    Article  Google Scholar 

  9. Bauer, S., Wiest, R., Reyes, M.: segmentation of brain tumor images based on integrated hierarchical classification and regularization. In: proceeding of BRATS-MICCAI (2012)

    Google Scholar 

  10. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  11. Brosch, T., Tang, L., Yoo, Y., Li, D., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging (2016)

    Google Scholar 

  12. Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_1

    Chapter  Google Scholar 

  13. Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview Mammogram analysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_78

    Chapter  Google Scholar 

  14. Chen, H., Ni, D., Qin, J., Li, S., Yang, X., Wang, T., Heng, P.A.: Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Informatics 19(5), 1627–1636 (2015)

    Article  Google Scholar 

  15. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  16. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  17. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)

    Article  Google Scholar 

  18. Corso, J.J., Sharon, E., Yuille, A.: Multilevel segmentation and integrated Bayesian model classification with an application to brain tumor segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 790–798. Springer, Heidelberg (2006). doi:10.1007/11866763_97

    Chapter  Google Scholar 

  19. Dollár, P., Zitnick, C.: Structured forests for fast edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841–1848 (2013)

    Google Scholar 

  20. Dvorak, P., Menze, B.: Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 13–24 (2015)

    Google Scholar 

  21. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Farahani, K., Menze, B., Reyes, M.: Brats 2014 Challenge Manuscripts (2014). http://www.braintumorsegmentation.org

  23. Farahani, K., Menze, B., Reyes, M.: Brats 2015 Challenge Manuscripts (2015). http://www.braintumorsegmentation.org

  24. Festa, J., Pereira, S., Mariz, J., Sousa, N., Silva, C.: Automatic brain tumor segmentation of multi-sequence MR images using random dicision forests. In: Proceeding Workshop on Brain Tumor Segmentation MICCAI (2013)

    Google Scholar 

  25. Gai, D., Jones, J., et al.: T1 weighted images (2016). http://radiopaedia.org/articles/t1-weighted-image

  26. Gai, D., Jones, J., et al.: T1 weighted images (2016). http://radiopaedia.org/articles/t2-weighted-image

  27. Gao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H.C., Roth, H., Papadakis, G.Z., Depeursinge, A., Summers, R.M., et al.: Holistic classification of ct attenuation patterns for interstitial lung diseases via deep convolutional neural networks

    Google Scholar 

  28. van Ginneken, B., Setio, A.A., Jacobs, C., Ciompi, F.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 286–289. IEEE (2015)

    Google Scholar 

  29. Girardi, D., Küng, J., Kleiser, R., Sonnberger, M., Csillag, D., Trenkler, J., Holzinger, A.: Interactive knowledge discovery with the doctor-in-the-loop: a practical example of cerebral aneurysms research. Brain Informatics, pp. 1–11 (2016)

    Google Scholar 

  30. Goodfellow, I.J., et al.: Maxout networks. In: ICML (2013)

    Google Scholar 

  31. Gotz, M., Weber, C., Blocher, J., Stieltjes, B., Meinzer, H.P., Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: proceeding of BRATS Challenge-MICCAI (2014)

    Google Scholar 

  32. Guizard, N., Coupé, P., Fonov, V.S., Manjón, J.V., et al.: Rotation-invariant multi-contrast non-local means for ms lesion segmentation (2015)

    Google Scholar 

  33. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)

    Google Scholar 

  34. Hariharan1, B. et al.: Simultaneous detection and segmentation. arXiv preprint arXiv:1407.1808 (2014)

  35. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Medical Image Analysis (2016). http://www.sciencedirect.com/science/article/pii/S1361841516300330

  36. Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 195–208. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30858-6_17

    Chapter  Google Scholar 

  37. Havaei, M., Jodoin, P.M., Larochelle, H.: Efficient interactive brain tumor segmentation as within-brain knn classification. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 556–561. IEEE (2014)

    Google Scholar 

  38. Havaei, M., Larochelle, H., Poulin, P., Jodoin, P.M.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg., 1–12 (2015)

    Google Scholar 

  39. Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceeding International Conference Pattern Recognition, vol. 1, pp. 532–535 (2002)

    Google Scholar 

  40. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics 3(2), 119–131 (2016)

    Article  Google Scholar 

  41. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions. BMC Bioinformatics 15(Suppl 6), I1 (2014)

    Article  Google Scholar 

  42. Jiang, C., Zhang, X., Huang, W., Meinel, C.: Segmentation and quantification of brain tumor. In: IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, (VECIMS), pp. 61–66 (2004)

    Google Scholar 

  43. Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segmentation, p. 13 (2015)

    Google Scholar 

  44. Kaus, M., Warfield, S.K., Jolesz, F.A., Kikinis, R.: Adaptive template moderated brain tumor segmentation in MRI. In: Evers, H., Glombitza, G., Meinzer, H.-P., Lehmann, T. (eds.) Bildverarbeitung für die Medizin 1999, pp. 102–106. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  45. Khotanlou, H., Colliot, O., Bloch, I.: Automatic brain tumor segmentation using symmetry analysis and deformable models. In: International Conference on Advances in Pattern Recognition ICAPR, pp. 198–202 (2007)

    Google Scholar 

  46. Kleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., Hamprecht, F.A.: ilastik for multi-modal brain tumor segmentation. In: proceeding of BRATS-MICCAI (2014)

    Google Scholar 

  47. Klein, T., Batmanghelich III., Wells III, W.M.: Distributed deep learning framework for large-scale 3D medical image segmentation 18(WS) (2015)

    Google Scholar 

  48. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  49. Kwon, D., Akbari, H., Da, X., Gaonkar, B., Davatzikos, C.: Multimodal brain tumor image segmentation using GLISTR. In: proceeding of BRATS Challenge - MICCAI (2014)

    Google Scholar 

  50. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 473–480. ACM (2007)

    Google Scholar 

  51. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  52. Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 121–132 (2005)

    Google Scholar 

  53. Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10443-0_39

    Google Scholar 

  54. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  55. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceeding ICML, vol. 30, p. 1 (2013)

    Google Scholar 

  56. Margeta, J., Criminisi, A., Cabrera Lozoya, R., Lee, D.C., Ayache, N.: Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1–11 (2015)

    Google Scholar 

  57. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  58. Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: A hybrid model for multimodal brain tumor segmentation. Multimodal Brain Tumor Segmentation, p. 31 (2013)

    Google Scholar 

  59. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  60. Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic segmentation with zoom-out features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3376–3385 (2015)

    Google Scholar 

  61. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30858-6_12

    Chapter  Google Scholar 

  62. Pinheiro, P., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: Proceedings of The 31st International Conference on Machine Learning, pp. 82–90 (2014)

    Google Scholar 

  63. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: Robust estimation for brain tumor segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 530–537. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39903-2_65

    Chapter  Google Scholar 

  64. Putaala, J., Kurkinen, M., Tarvos, V., Salonen, O., Kaste, M., Tatlisumak, T.: Silent brain infarcts and leukoaraiosis in young adults with first-ever ischemic stroke. Neurology 72(21), 1823–1829 (2009)

    Article  Google Scholar 

  65. Rao, V., Shari Sarabi, M., Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings Winning Contribution, pp. 31–35 (2014)

    Google Scholar 

  66. Rexilius, J., Hahn, H.K., Klein, J., Lentschig, M.G., Peitgen, H.O.: Medical Imaging, p. 65140V (2007)

    Google Scholar 

  67. Reza, S., Iftekharuddin, K.: Multi-class abnormal brain tissue segmentation using texture features. In: proceeding of BRATS Challenge - MICCAI (2013)

    Google Scholar 

  68. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  69. Roth, H.R., Farag, A., Lu, L., Turkbey, E.B., Summers, R.M.: Deep convolutional networks for pancreas segmentation in CT imaging. In: SPIE Medical Imaging, p. 94131G. International Society for Optics and Photonics (2015)

    Google Scholar 

  70. Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  71. Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10404-1_65

    Google Scholar 

  72. Schlegl, T., Ofner, J., Langs, G.: Unsupervised pre-training across image domains improves lung tissue classification. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Zhang, S., Cai, W.T., Metaxas, D. (eds.) MCV 2014. LNCS, vol. 8848, pp. 82–93. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13972-2_8

    Google Scholar 

  73. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning (2016)

    Google Scholar 

  74. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  75. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: Advances in Neural Information Processing Systems, pp. 2980–2988 (2015)

    Google Scholar 

  76. Styner, M., Lee, J., Chin, B., Chin, M., Commowick, O., Tran, H., Markovic-Plese, S., et al.: 3D segmentation in the clinic: a grand challenge ii: MS lesion segmentation. MIDAS 2008, 1–6 (2008)

    Google Scholar 

  77. Tajbakhsh, N., Shin, J., Gurudu, S., Hurst, R., Kendall, C., Gotway, M., Liang, J.: Convolutional neural networks for medical image analysis: Fine tuning or full training? (2016)

    Google Scholar 

  78. Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation with ANTsR. Neuroinformatics 13(2), 209–225 (2015)

    Article  Google Scholar 

  79. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings Winning Contribution, pp. 31–35 (2014)

    Google Scholar 

  80. Vaidhya, K., Thirunavukkarasu, S., Alex, V., Krishnamurthi, G.: Multi-modal brain tumor segmentation using stacked denoising autoencoders. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 181–194. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30858-6_16

    Chapter  Google Scholar 

  81. Vaidya, S., Chunduru, A., Muthuganapathy, R., Krishnamurthi, G.: Longitudinal multiple sclerosis lesion segmentation using 3D convolutional neural networks

    Google Scholar 

  82. Tulder, G., Bruijne, M.: Why does synthesized data improve multi-sequence classification? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 531–538. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_65

    Chapter  Google Scholar 

  83. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  84. Wang, T., Cheng, I., Basu, A.: Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 56(3), 781–789 (2009)

    Article  Google Scholar 

  85. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  86. Zhang, J., Ma, K.K., Er, M.H., Chong, V., et al.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International Workshop on Advanced Image Technology (IWAIT 2004), pp. 207–211 (2004)

    Google Scholar 

  87. Zhao, L., Wu, W., Corso, J.J.: Brain tumor segmentation based on gmm and active contour method with a model-aware edge map. In: BRATS MICCAI, pp. 19–23 (2012)

    Google Scholar 

  88. Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS pp. 36–39 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Havaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Havaei, M., Guizard, N., Larochelle, H., Jodoin, PM. (2016). Deep Learning Trends for Focal Brain Pathology Segmentation in MRI. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics