Skip to main content

Machine Learning for Health Informatics

  • Chapter
  • First Online:
Machine Learning for Health Informatics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9605))

Abstract

Machine Learning (ML) studies algorithms which can learn from data to gain knowledge from experience and to make decisions and predictions. Health Informatics (HI) studies the effective use of probabilistic information for decision making. The combination of both has greatest potential to rise quality, efficacy and efficiency of treatment and care. Health systems worldwide are confronted with “big data” in high dimensions, where the inclusion of a human is impossible and automatic ML (aML) show impressive results. However, sometimes we are confronted with complex data, “little data”, or rare events, where aML-approaches suffer of insufficient training samples. Here interactive ML (iML) may be of help, particularly with a doctor-in-the-loop, e.g. in subspace clustering, k-Anonymization, protein folding and protein design. However, successful application of ML for HI needs an integrated approach, fostering a concerted effort of four areas: (1) data science, (2) algorithms (with focus on networks and topology (structure), and entropy (time), (3) data visualization, and last but not least (4) privacy, data protection, safety & security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  2. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10, 988–999 (1999)

    Article  Google Scholar 

  3. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory COLT, pp. 144–152. ACM (1992)

    Google Scholar 

  4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  5. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  7. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinform. 15, I1 (2014)

    Article  Google Scholar 

  8. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intell. Inform. Bull. 15, 6–14 (2014)

    Google Scholar 

  9. Su, X., Kang, J., Fan, J., Levine, R.A., Yan, X.: Facilitating score and causal inference trees for large observational studies. J. Mach. Learn. Res. 13, 2955–2994 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Huppertz, B., Holzinger, A.: Biobanks a source of large biological data sets: open problems and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 317–330. Springer, Heidelberg (2014)

    Google Scholar 

  11. Mattmann, C.A.: Computing: a vision for data science. Nature 493, 473–475 (2013)

    Article  Google Scholar 

  12. Otasek, D., Pastrello, C., Holzinger, A., Jurisica, I.: Visual data mining: effective exploration of the biological universe. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 19–33. Springer, Heidelberg (2014)

    Google Scholar 

  13. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015)

    Article  Google Scholar 

  14. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Houlsby, N., Huszar, F., Ghahramani, Z., Hernndez-lobato, J.M.: Collaborative gaussian processes for preference learning. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems (NIPS 2012), pp. 2096–2104 (2012)

    Google Scholar 

  16. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104, 148–175 (2016)

    Article  Google Scholar 

  17. Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013)

    Article  Google Scholar 

  18. Lee, S., Holzinger, A.: Knowledge discovery from complex high dimensional data. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds.) Solving Large Scale Learning Tasks. Challenges and Algorithms. LNCS (LNAI), vol. 9580, pp. 148–167. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41706-6_7

    Chapter  Google Scholar 

  19. Mayer, C., Bachler, M., Holzinger, A., Stein, P., Wassertheurer, S.: The effect of threshold values and weighting factors on the association between entropy measures and mortality after myocardial infarction in the cardiac arrhythmia suppression trial. Entropy 18, 1–15 (2016)

    Article  Google Scholar 

  20. Jadad, A.R., OGrady, L.: How should health be defined? Br. Med. J. 337, a2900 (2008)

    Article  Google Scholar 

  21. Parry, D.: Health informatics. In: Kasabov, N. (ed.) Springer Handbook of Bio-/Neuro-informatics, pp. 555–564. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. (BRIN) 3, 119–131 (2016)

    Article  Google Scholar 

  23. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive Machine Learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_6

    Chapter  Google Scholar 

  24. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17, 37–54 (1996)

    Google Scholar 

  25. Holzinger, A.: On topological data mining. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 331–356. Springer, Heidelberg (2014)

    Google Scholar 

  26. Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. AK Peters Ltd., Natick (2010)

    MATH  Google Scholar 

  27. Holzinger, A.: On knowledge discovery and interactive intelligent visualization of biomedical data - challenges in human computer interaction & biomedical informatics. In: Helfert, M., Fancalanci, C., Filipe, J. (eds.) DATA 2012, International Conference on Data Technologies and Applications, pp. 5–16 (2012)

    Google Scholar 

  28. Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40511-2_22

    Chapter  Google Scholar 

  29. Holzinger, A., Jurisica, I.: Knowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutions. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 1–18. Springer, Heidelberg (2014)

    Google Scholar 

  30. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  31. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Burges, C.J.: Dimension reduction: a guided tour. Found. Trends Mach. Learn. 2, 275–365 (2010)

    Article  MATH  Google Scholar 

  33. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.: Principles of Neural Science, 5th edn. McGraw-Hill, New York (2012). (1760 pages)

    Google Scholar 

  34. McDermott, J.E., Wang, J., Mitchell, H., Webb-Robertson, B.J., Hafen, R., Ramey, J., Rodland, K.D.: Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin. Med. Diagn. 7, 37–51 (2013)

    Article  Google Scholar 

  35. Swan, A.L., Mobasheri, A., Allaway, D., Liddell, S., Bacardit, J.: Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. Omics- J. Integr. Biol. 17, 595–610 (2013)

    Article  Google Scholar 

  36. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Report, May 2011 (available online)

    Google Scholar 

  37. Goolsby, A.W., Olsen, L., McGinnis, M., Grossmann, C.: Clincial data as the basic staple of health learning - creating and protecting a public good. National Institute of Health (2010)

    Google Scholar 

  38. Holzinger, A.: Lecture 2 fundamentals of data, information, and knowledge. In: Biomedical Informatics: Discovering Knowledge in Big Data, pp. 57–107. Springer, Cham (2014)

    Google Scholar 

  39. Jeanquartier, F., Jean-Quartier, C., Schreck, T., Cemernek, D., Holzinger, A.: Integrating open data on cancer in support to tumor growth analysis. In: Renda, M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832, pp. 49–66. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43949-5_4

    Chapter  Google Scholar 

  40. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. (CSUR) 41, 1–41 (2008)

    Article  Google Scholar 

  41. Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1784–1797 (2006)

    Article  Google Scholar 

  42. Blanchet, L., Smolinska, A.: Data fusion in metabolomics and proteomics for biomarker discovery. In: Jung, K. (ed.) Statistical Analysis in Proteomics, pp. 209–223. Springer, New York (2016)

    Chapter  Google Scholar 

  43. Bellegarda, J.R., Monz, C.: State of the art in statistical methods for language and speech processing. Comput. Speech Lang. 35, 163–184 (2016)

    Article  Google Scholar 

  44. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, New York (2015)

    Chapter  Google Scholar 

  45. Spinrad, N.: Google car takes the test. Nature 514, 528 (2014)

    Article  Google Scholar 

  46. Wilson, A.G., Dann, C., Lucas, C.G., Xing, E.P.: The human kernel. arXiv preprint arXiv:1510.07389 (2015)

  47. Settles, B.: From theories to queries: active learning in practice. In: Guyon, I., Cawley, G., Dror, G., Lemaire, V., Statnikov, A. (eds.) Active Learning and Experimental Design Workshop 2010, vol. 16, pp. 1–18. JMLR Proceedings, Sardinia (2011)

    Google Scholar 

  48. Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L., Holzinger, A.: Analysis of patient groups and immunization results based on subspace clustering. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS (LNAI), vol. 9250, pp. 358–368. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23344-4_35

    Chapter  Google Scholar 

  49. Lathrop, R.H.: The protein threading problem with sequence amino-acid interaction preferences is np-complete. Protein Eng. 7, 1059–1068 (1994)

    Article  Google Scholar 

  50. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: Proceedings of the 31st International Conference on Very Large Data Bases VLDB, pp. 901–909 (2005)

    Google Scholar 

  51. Gigerenzer, G., Gaissmaier, W.: Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011)

    Article  Google Scholar 

  52. Harary, F.: Structural Models. An Introduction to the Theory of Directed Graphs. Wiley, New York (1965)

    MATH  Google Scholar 

  53. Strogatz, S.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  54. Dorogovtsev, S., Mendes, J.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  55. Dehmer, M., Emmert-Streib, F., Pickl, S., Holzinger, A. (eds.): Big Data of Complex Networks. CRC Press Taylor & Francis Group, Boca Raton, London, New York (2016)

    Google Scholar 

  56. Holzinger, A., Ofner, B., Dehmer, M.: Multi-touch graph-based interaction for knowledge discovery on mobile devices: state-of-the-art and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 241–254. Springer, Heidelberg (2014)

    Google Scholar 

  57. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kleinberg, J.: Navigation in a small world. Nature 406, 845 (2000)

    Article  Google Scholar 

  59. Koontz, W., Narendra, P., Fukunaga, K.: A graph-theoretic approach to nonparametric cluster analysis. IEEE Trans. Comput. 100, 936–944 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wittkop, T., Emig, D., Truss, A., Albrecht, M., Boecker, S., Baumbach, J.: Comprehensive cluster analysis with transitivity clustering. Nat. Protoc. 6, 285–295 (2011)

    Article  Google Scholar 

  61. Holzinger, A., Malle, B., Bloice, M., Wiltgen, M., Ferri, M., Stanganelli, I., Hofmann-Wellenhof, R.: On the generation of point cloud data sets: the first step in the knowledge discovery process. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 57–80. Springer, Heidelberg (2014)

    Google Scholar 

  62. Canutescu, A.A., Shelenkov, A.A., Dunbrack, R.L.: A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12, 2001–2014 (2003)

    Article  Google Scholar 

  63. Jiang, C., Coenen, F., Sanderson, R., Zito, M.: Text classification using graph mining-based feature extraction. Knowl. Based Syst. 23, 302–308 (2010)

    Article  Google Scholar 

  64. Washio, T., Motoda, H.: State of the art of graph-based data mining. ACM SIGKDD Explor. Newsl. 5, 59 (2003)

    Article  Google Scholar 

  65. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. J. Artif. Int. Res. 1, 231–255 (1994)

    Google Scholar 

  66. Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learning framework. Appl. Intell. 4, 297–316 (1994)

    Article  Google Scholar 

  67. Dehaspe, L., Toivonen, H.: Discovery of frequent DATALOG patterns. Data Min. Knowl. Discov. 3, 7–36 (1999)

    Article  Google Scholar 

  68. Windridge, D., Bober, M.: A kernel-based framework for medical big-data analytics. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 196–207. Springer, Heidelberg (2014)

    Google Scholar 

  69. Zhou, X., Han, H., Chankai, I., Prestrud, A., Brooks, A.: Approaches to text mining for clinical medical records. In: Proceedings of the 2006 ACM Symposium on Applied Computing - SAC 2006, New York, USA, p. 235. ACM, New York (2006)

    Google Scholar 

  70. Corley, C.D., Cook, D.J., Mikler, A.R., Singh, K.P.: Text and structural data mining of influenza mentions in Web and social media. Int. J. Environ. Res. Public Health 7, 596–615 (2010)

    Article  Google Scholar 

  71. Chen, H., Sharp, B.M.: Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinform. 5, 147 (2004)

    Article  Google Scholar 

  72. Barabási, A., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)

    Article  Google Scholar 

  73. Cannon, J.W.: The recognition problem: what is a topological manifold? Bull. Am. Math. Soc. 84, 832–866 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zomorodian, A.: Computational topology. In: Atallah, M., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook. Applied Algorithms and Data Structures Series, vol. 2, 2nd edn, pp. 1–31. Chapman and Hall/CRC, Boca Raton (2010). doi:10.1201/9781584888215-c3

    Google Scholar 

  75. Epstein, C., Carlsson, G., Edelsbrunner, H.: Topological data analysis. Inverse Prob. 27, 120–201 (2011)

    Google Scholar 

  76. Edelsbrunner, H., Mucke, E.P.: 3-dimensional alpha-shapes. ACM Trans. Graph. 13, 43–72 (1994)

    Article  MATH  Google Scholar 

  77. Wagner, H., Dlotko, P.: Towards topological analysis of high-dimensional feature spaces. Comput. Vis. Image Underst. 121, 21–26 (2014)

    Article  Google Scholar 

  78. Kobayashi, M., Aono, M.: Vector space models for search and cluster mining. In: Berry, M.W. (ed.) Survey of Text Mining: Clustering, Classification, and Retrieval, pp. 103–122. Springer, New York (2004)

    Chapter  Google Scholar 

  79. Holzinger, A., Schantl, J., Schroettner, M., Seifert, C., Verspoor, K.: Biomedical text mining: open problems and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 271–300. Springer, Heidelberg (2014)

    Google Scholar 

  80. Wagner, H., Dłotko, P., Mrozek, M.: Computational topology in text mining. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 68–78. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30238-1_8

    Chapter  Google Scholar 

  81. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  82. Zhu, X.: Persistent homology: an introduction and a new text representation for natural language processing. In: Rossi, F. (ed.) IJCAI. IJCAI/AAAI (2013)

    Google Scholar 

  83. Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36, 1543–1557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  84. Bubenik, P., Kim, P.T.: A statistical approach to persistent homology. Homology Homotopy Appl. 9, 337–362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  85. Mowshowitz, A.: Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  86. Körner, J.: Coding of an information source having ambiguous alphabet and the entropy of graphs. In: 6th Prague Conference on Information Theory, pp. 411–425 (1973)

    Google Scholar 

  87. Holzinger, A., Ofner, B., Stocker, C., Calero Valdez, A., Schaar, A.K., Ziefle, M., Dehmer, M.: On graph entropy measures for knowledge discovery from publication network data. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 354–362. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40511-2_25

    Chapter  Google Scholar 

  88. Dehmer, M.: Information theory of networks. Symmetry 3, 767–779 (2011)

    Article  MathSciNet  Google Scholar 

  89. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  90. Adler, R., Downarowicz, T., Misiurewicz, M.: Topological entropy. Scholarpedia 3, 2200 (2008)

    Article  Google Scholar 

  91. Hornero, R., Aboy, M., Abasolo, D., McNames, J., Wakeland, W., Goldstein, B.: Complex analysis of intracranial hypertension using approximate entropy. Crit. Care Med. 34, 87–95 (2006)

    Article  Google Scholar 

  92. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  93. Mueller, H., Reihs, R., Zatloukal, K., Holzinger, A.: Analysis of biomedical data with multilevel glyphs. BMC Bioinform. 15, S5 (2014)

    Article  Google Scholar 

  94. Toderici, G., Aradhye, H., Paca, M., Sbaiz, L., Yagnik, J.: Finding meaning on youtube: tag recommendation and category discovery. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 3447–3454. IEEE (2010)

    Google Scholar 

  95. Sturm, W., Schreck, T., Holzinger, A., Ullrich, T.: Discovering medical knowledge using visual analytics a survey on methods for systems biology and omics data. In: Bühler, K., Linsen, L., John, N.W. (eds.) Eurographics Workshop on Visual Computing for Biology and Medicine, Eurographics EG, pp. 71–81 (2015)

    Google Scholar 

  96. Müller, E., Assent, I., Krieger, R., Jansen, T., Seidl, T.: Morpheus: interactive exploration of subspace clustering. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 2008, pp. 1089–1092. ACM (2008)

    Google Scholar 

  97. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27, 125–140 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  98. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Privacy aware learning. J. ACM (JACM) 61, 38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  99. Malle, B., Kieseberg, P., Weippl, E., Holzinger, A.: The right to be forgotten: towards machine learning on perturbed knowledge bases. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 251–266. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_17

    Chapter  Google Scholar 

  100. Bloice, M.D., Holzinger, A.: A tutorial on machine learning and data science tools with python. In: Holzinger, A. (ed.) ML for Health Informatics. LNCS (LNAI), vol. 9605, pp. 435–480. Springer, Heidelberg (2016)

    Google Scholar 

  101. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: Proceedings of the on Future of Software Engineering, pp. 167–181. ACM (2014)

    Google Scholar 

  102. Jeanquartier, F., Jean-Quartier, C., Kotlyar, M., Tokar, T., Hauschild, A.C., Jurisica, I., Holzinger, A.: Machine learning for in silico modeling of tumor growth. In: Holzinger, A. (ed.) ML for Health Informatics. LNCS (LNAI), vol. 9605, pp. 415–434. Springer, Heidelberg (2016)

    Google Scholar 

  103. Valiant, L.G.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  104. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198 (2000)

    MathSciNet  MATH  Google Scholar 

  105. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117. ACM (2004)

    Google Scholar 

  106. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  107. Parameswaran, S., Weinberger, K.Q.: Large margin multi-task metric learning. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems (NIPS 2010), vol. 23, pp. 1867–1875 (2010)

    Google Scholar 

  108. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Bower, G.H. (ed.) The Psychology of Learning and Motivation, vol. 24, pp. 109–164. Academic Press, San Diego (1989)

    Google Scholar 

  109. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999)

    Article  Google Scholar 

  110. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgeting in gradient-based neural networks arXiv:1312.6211v3 (2015)

  111. Pan, S.J., Yang, Q.A.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  112. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

    MathSciNet  MATH  Google Scholar 

  113. Sycara, K.P.: Multiagent systems. AI Mag. 19, 79 (1998)

    Google Scholar 

  114. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  115. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)

    Article  MATH  Google Scholar 

  116. Benediktsson, J.A., Swain, P.H.: Consensus theoretic classification methods. IEEE Trans. Syst. Man Cybern. 22, 688–704 (1992)

    Article  MATH  Google Scholar 

  117. Weller, S.C., Mann, N.C.: Assessing rater performance without a gold standard using consensus theory. Med. Decis. Making 17, 71–79 (1997)

    Article  Google Scholar 

  118. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  119. Roche, B., Guegan, J.F., Bousquet, F.: Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission. BMC Bioinform. 9, 435 (2008)

    Article  Google Scholar 

  120. Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff propagation. J. Mach. Learn. Res. 7, 1789–1828 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am very grateful for fruitful discussions with members of the HCI-KDD network and I thank my Institutes both at Graz University of Technology and the Medical University of Graz, my colleagues and my students for the enjoyable academic freedom, the inspiring intellectual environment, and the opportunity to follow my personal motto: Science is to test crazy ideas - Engineering is to put these ideas into Business. Last but not least, I thank all students of my course LV 185.A83 (http://hci-kdd.org/machine-learning-for-health-informatics-course), at Vienna University of Technology for their kind interest and motivating feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Holzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Holzinger, A. (2016). Machine Learning for Health Informatics. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics