Advertisement

Prediction of a Mobile’s Location Based on Classification According to His Profile and His Communication Bill

  • Linda Chamek
  • Mehammed Daoui
  • Selma BoumerdassiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10026)

Abstract

In this paper, we present a new approach to predict the displacement of a mobile based on classification according to profile (all significant information that characterizes a user), and taking account of communication bill of this one. Our solution can be implemented in a third generation network, by exploiting information of users (age, function, residence place, work place …), the existing infrastructure (roads …) and the historical of displacements.

Keywords

Mobile network Prediction Profile Data mining 

References

  1. 1.
    Zhuang, W., Chua, K.C., Jiang, S.M.: Measurement-based dynamic bandwidth reservation scheme for handoff in mobile multimedia networks (1998)Google Scholar
  2. 2.
    Hsu, L., Purnadi, R., Wang, S.S.P.: Maintaining quality of service (QoS) during handoff in cellular system with movement prediction schemes. In: IEEE (1999)Google Scholar
  3. 3.
    Choi, S., Shin, K.G.: Predictive and adaptive bandwidth reservation for hand-offs in QoS-sensitive cellular networks. In: IEEE (1998)Google Scholar
  4. 4.
    Shen, X., Mark, J.W., Ye, J.: User mobility profile prediction: an adaptive fuzzy interference approach. Wirel. Netw. 6, 362–374 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ashrook, D., Staruer, T.: Learning significant locations and predicting user movement with GPS. In: Proceedings of the 6th International Symposium on Wearable Computers TSWC 2002 (2002)Google Scholar
  6. 6.
    Soh, W.S., Kim, H.S.: QoS provisioning in cellular networks based on mobility prediction techniques. IEEE Commun. Mag. 41, 86–92 (2003)Google Scholar
  7. 7.
    Liou, S.C., Lu, H.C.: Applied neural network for location prediction and resource reservation scheme in wireless network. In: Proceedings of ICCT (2003)Google Scholar
  8. 8.
    François, J.M., Leduc, G.: Entropy-based knowledge spreading and application to mobility prediction. In: ACM CoNEXT 2005, Toulouse, France, 24–27 October 2005Google Scholar
  9. 9.
    Samaan, N., Karmouch, A.: A mobility prediction architecture based on contextual knowledge and conceptual maps. IEEE Trans. Mob. Comput. 4(6), 537–551 (2005)CrossRefGoogle Scholar
  10. 10.
    Daoui, M., M’zoughi, A., Lalam, M., Belkadi, M., Aoudjit, R.: Mobility prediction based on an ant system. Comput. Commun. 31, 3090–3097 (2008)CrossRefGoogle Scholar
  11. 11.
    Daoui, M., M’zoughi, A., Lalam, M., Aoudjit, R., Belkadi, M.: Forecasting models, methods and applications, mobility prediction in cellular network, pp. 221–232. i-Concepts Press (2010)Google Scholar
  12. 12.
    Chamek, L., Daoui, M., Lalam, M.: Mobility prediction based on classification according to the profile. Journées sur les rencontres en Informatique R2I, 12–14 june 2011Google Scholar
  13. 13.
    Chen, X., Meriaux, F., Valentin, S.: Predicting a user’s next cell with supervised learning based on channel states. In: IEEE 14th Workshop on Signal Processing Advances in Wireless Communication (SPAWC) (2013)Google Scholar
  14. 14.
    Gatmir-Motahari, S., Zang, H., Reuther, P.: Time-clustering-based place prediction for wireless subscribers. IEEE/ACM Trans. Netw. 21(5), 1436–1446 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhang, D., Zhang, D., Xiong, H., Yang, L.T., Gauthier, V.: NextCell: predicting location using social interplay from cell phone traces. IEEE Trans. Comput. 64(2), 452–463 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hu, P., Young, J.: 1990 Nationwide Personal Transportation Survey (NPTS), Office of Highway Information Management, October 1994Google Scholar
  17. 17.
    Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  18. 18.
    Wu, X., Kumar, V., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)CrossRefGoogle Scholar
  19. 19.
    Scourias, J., Kunz, T.: An activity-based mobility model and location management simulation framework. In: Proceedings of the Second ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Seattle, Washington, USA, pp. 61–68 (1999)Google Scholar
  20. 20.
    Scorias, J., Kunz, T.: A dynamic individualized location management algorithm. In: 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Waves of the Year 2000, PIMRC 1997, Helsinki, pp. 1004–1008, September 1997Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Linda Chamek
    • 1
    • 2
  • Mehammed Daoui
    • 1
  • Selma Boumerdassi
    • 2
    Email author
  1. 1.LARIUniversity Mouloud MammeriTizi-OuzouAlgeria
  2. 2.Conservatoire National des Arts et Métiers CNAMParisFrance

Personalised recommendations