Advertisement

A Middleware to Allow Fine-Grained Access Control of Twitter Applications

  • Francesco BuccafurriEmail author
  • Gianluca Lax
  • Serena Nicolazzo
  • Antonino Nocera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10026)

Abstract

Mobile applications security is nowadays one of the most important topics in the field of information security, due to their pervasivity in the people’s life. Among mobile applications, those that interact with social network profiles, have a great potential for development, as they intercept another powerful asset of the today cyberspace. However, one of the problems that can limit the diffusion of social network applications is the lack of fine-grained control when an application use the APIs of a social network to access a profile. For instance, in Twitter, the supported access control policy is basically on/off, so that if a (third party) application needs the right to write in a user profile, the user is enforced to grant this right with no restriction in the entire profile. This enables a large set of security threats and can make (even inexpert) users reluctant to run these applications. To overcome this problem, we propose an effective solution working for Android Twitter applications based on a middleware approach. The proposed solution enables other possible benefits, as anomaly-based malware detection leveraging API-call patterns, and it can be extended to a multiple social network scenario.

Keywords

Application security Fine-grained access control Android Twitter OAuth 

Notes

Acknowledgment

This work has been partially supported by the Program “Programma Operativo Nazionale Ricerca e Competitività” 2007–2013, Distretto Tecnologico CyberSecurity funded by the Italian Ministry of Education, University and Research.

References

  1. 1.
  2. 2.
    Android Developers (2015). https://developer.android.com/index.html
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A.: A privacy-preserving solution for tracking people in critical environments. In: Proceedings of International Workshop on Computers, Software & Applications (COMPSAC 2014), pp. 146–151. IEEE Computer Society, V\(\ddot{a}\)ster\(\dot{a}\)s (2014)Google Scholar
  15. 15.
    Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A.: Comparing Twitter and Facebook user behavior: privacy and other aspects. Comput. Hum. Behav. 52, 87–95 (2015)CrossRefGoogle Scholar
  16. 16.
    Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A.: A model to support design and development of multiple-social-network applications. Inf. Sci. 331, 99–119 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A., Ursino, D.: Measuring betweenness centrality in social internetworking scenarios. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013. LNCS, vol. 8186, pp. 666–673. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41033-8_84 CrossRefGoogle Scholar
  18. 18.
    Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A., Ursino, D.: Driving global team formation in social networks to obtain diversity. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 410–419. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08245-5_26 Google Scholar
  19. 19.
    Burt, C.C., Bryant, B.R., Raje, R.R., Olson, A., Auguston, M.: Model driven security: unification of authorization models for fine-grain access control. In: Proceedings of 7th IEEE International Enterprise Distributed Object Computing Conference, pp. 159–171. IEEE (2003)Google Scholar
  20. 20.
    Butt, A.R., Adabala, S., Kapadia, N.H., Figueiredo, R., Fortes, J., et al.: Fine-grain access control for securing shared resources in computational grids. In: Proceedings of IEEE-IEE Vehicle Navigation and Information Systems Conference, 8-p. IEEE (1993)Google Scholar
  21. 21.
    Caviglione, L., Lalande, J.-F., Mazurczyk, W., Wendzel, S.: Analysis of human awareness of security, privacy threats in smart environments (2015). arXiv preprint arXiv:1502.00868 Google Scholar
  22. 22.
    Cirani, S., Picone, M., Gonizzi, P., Veltri, L., Ferrari, G.: IoT-OAS: an OAuth-based authorization service architecture for secure services in IoT scenarios. IEEE Sens. J. 15(2), 1224–1234 (2015)CrossRefGoogle Scholar
  23. 23.
    Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: context-related policy enforcement for android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18178-8_29 CrossRefGoogle Scholar
  24. 24.
    Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke, S.: A resource management architecture for metacomputing systems. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459, pp. 62–82. Springer, Heidelberg (1998). doi: 10.1007/BFb0053981 CrossRefGoogle Scholar
  25. 25.
    Denning, P.J.: Fault tolerant operating systems. ACM Comput. Surv. (CSUR) 8(4), 359–389 (1976)CrossRefzbMATHGoogle Scholar
  26. 26.
    Domingo-Pascual, J., Shavitt, Y., Uhlig, S.: Traffic Monitoring and Analysis, vol. 6613. Springer Science & Business Media, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification. In: Proceedings of 16th ACM Conference on Computer and Communications Security, pp. 235–245. ACM (2009)Google Scholar
  28. 28.
    Ferrara, P., Tripp, O., Pistoia, M.: Morphdroid: fine-grained privacy verification. In: Proceedings of 31st Annual Computer Security Applications Conference, pp. 371–380. ACM (2015)Google Scholar
  29. 29.
    Ferreira, D., Kostakos, V., Beresford, A.R., Lindqvist, J., Dey, A.K.: Securacy: an empirical investigation of android applications network usage, privacy and security. In: Proceedings of 8th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec) (2015)Google Scholar
  30. 30.
    Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certification of android applications. Manuscript, University of Maryland, 2(3), (2009). http://www.cs.umd.edu/avik/projects/scandroidascaa
  31. 31.
    Hammer-Lahav, E.: The OAuth 1.0 protocol (2010)Google Scholar
  32. 32.
    Hardt, D.: The OAuth 2.0 authorization framework (2012)Google Scholar
  33. 33.
    Jeon, W., Kim, J., Lee, Y., Won, D.: A practical analysis of smartphone security. In: Smith, M.J., Salvendy, G. (eds.) Human Interface 2011. LNCS, vol. 6771, pp. 311–320. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21793-7_35 CrossRefGoogle Scholar
  34. 34.
    Keahey, K., Von, W.: Fine-grain authorization for resource management in the grid environment. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 199–206. Springer, Heidelberg (2002). doi: 10.1007/3-540-36133-2_18 CrossRefGoogle Scholar
  35. 35.
    La Polla, M., Martinelli, F., Sgandurra, D.: A survey on security for mobile devices. IEEE Commun. Surv. Tutor. 15(1), 446–471 (2013)CrossRefGoogle Scholar
  36. 36.
    Lax, G., Buccafurri, F., Nicolazzo, S., Nocera, A., Fotia, L.: A new approach for electronic signature. In: Proceedings of International Conference on Information Systems Security and Privacy (ICISSP 2016), Rome, IT (2016)Google Scholar
  37. 37.
    Maxion, R., Tan, K., et al.: Benchmarking anomaly-based detection systems. In: Proceedings of International Conference on Dependable Systems and Networks, DSN 2000, pp. 623–630. IEEE (2000)Google Scholar
  38. 38.
    Mylonas, A., Kastania, A., Gritzalis, D.: Delegate the smartphone user? Security awareness in smartphone platforms. Comput. Secur. 34, 47–66 (2013)CrossRefGoogle Scholar
  39. 39.
    Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and enforcement with user-defined runtime constraints. In: Proceedings of 5th ACM Symposium on Information, Computer and Communications Security, pp. 328–332. ACM (2010)Google Scholar
  40. 40.
    Nikou, S., Bouwman, H.: Ubiquitous use of mobile social network services. Telematics Inform. 31(3), 422–433 (2014)CrossRefGoogle Scholar
  41. 41.
    Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich application-centric security in android. Secur. Commun. Netw. 5(6), 658–673 (2012)CrossRefGoogle Scholar
  42. 42.
    Schiffman, J., Zhang, X., Gibbs, S.: Dauth: fine-grained authorization delegation for distributed web application consumers. In: IEEE International Symposium on Policies for Distributed Systems and Networks (POLICY), pp. 95–102. IEEE (2010)Google Scholar
  43. 43.
    Shehab, M., Marouf, S., Hudel, C.: RoAuth: recommendation based open authorization. In: Proceedings of 7th Symposium on Usable Privacy and Security, p. 11. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Francesco Buccafurri
    • 1
    Email author
  • Gianluca Lax
    • 1
  • Serena Nicolazzo
    • 1
  • Antonino Nocera
    • 1
  1. 1.DIIESUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly

Personalised recommendations