Ensuring Connectivity in Wireless Sensor Network with a Robot-Assisted Sensor Relocation

  • Sahla Masmoudi MnifEmail author
  • Leila Azouz Saidane
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10026)


Wireless sensor networks (WSN) are used to survey a given Region Of Interest (ROI) especially the WSNs are used to survey hazardous and unreacheable zones like military zone or frontiers, the survey of this kind of areas is very important and can prevent from terorrist events. Ensuring connectivity between all deployed sensors of the (ROI) is a challenging issue. Random technique of node deployment such as stochastic node dropping result in hole creating in some areas of the network and redundant nodes may appear in other areas. In this paper, we propose two assisted-robot algorithms in which we use redundant sensors and relocate them in order to cover holes. We exploit here the redundancy of sensors to connect the formed partitions of sensors. We propose two strategies for the robot functioning and sensor relocation, the first strategy is a grid based one, in this solution the controlled area is divided into a virtual grid and the robot movement is based on this grid, we called this strategy “Grid-Based Walk with Memorization” (GBWM). The second strategy is an island based strategy, the network is composed of a set of disconnected island and the task of the robot is to connect the formed islands, we called this strategy “Island-Based Walk with Memorization”, noted (IBWM). Through extensive simulations we show the importance of these algorithms.


Wireless sensor network Relocation Connectivity Mobile robot Redundant nodes 


  1. 1.
    Kershner, R.: The number of circles covering a set. Am. J. Math. 61, 665–671 (1939)Google Scholar
  2. 2.
    La Porta, T., Wang, G., Cao, G., Wang, W.: Sensor relocation in mobile sensor networks. In: Infocom 2005 (2005)Google Scholar
  3. 3.
    Wang, F., Thai, M., Du, D.: On the construction of 2-connected virtual backbone in wireless networks. IEEE Trans. Wireless Commun. 8, 1230–1237 (2009)CrossRefGoogle Scholar
  4. 4.
    Abbasi, A., Younis, M., Akkaya, K.: Movement-assisted connectivity restoration in wireless sensor and actuator networks. IEEE Trans. Parallel Distrib. Syst. 20, 1366–1379 (2009)CrossRefGoogle Scholar
  5. 5.
    Wang, G., Cao, G., Laporta, T.: A bidding protocol for deploying mobile sensors. In: The 11th IEEE International Conference on Network Protocols (ICNP) (2003)Google Scholar
  6. 6.
    Wang, G., Cao, G., Laporta, T.: Movement-assisted sensor deployment. In: Infocom 2004 (2004)Google Scholar
  7. 7.
    Fletcher, G., Li, X., Nayak, A., Stojmenovic, I.: Carrier-based sensor deployment by a robot team. In: IEEE SECON (2010)Google Scholar
  8. 8.
    Mei, Y., Xian, C., Das, S., Hu, Y.C., Lu, Y.H.: Sensor replacement using mobile robots. Comput. Commun. 30(13), 2615–2626 (2007)CrossRefGoogle Scholar
  9. 9.
    Xuan, D., Yun, Z., Bai, X., Kumar, S., Lai, T.H.: Deploying wireless sensors to achieve both coverage and connectivity. In: Mobile Ad Hoc Networking and Computing (2006)Google Scholar
  10. 10.
    Li, X., Santoro, N.: ZONER: a zone-based sensor relocation protocol for mobile sensor networks. In: IEEE WLN (2006)Google Scholar
  11. 11.
    Li, X., Santoro, N., Stojmenovic, I.: Mesh-based sensor relocation for coverage maintenance in mobile sensor networks. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 696–708. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73549-6_68 CrossRefGoogle Scholar
  12. 12.
    Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor networks deployment using potential fields: a distributed, scalable solution to the area coverage problem. In: Asama, H., Arai, T., Fukuda, T., Hasegawa, T. (eds.) Distributed Autonomous Robotics Systems, pp. 299–308. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Egea-Lpez, E., Vales-Alonso, J., Martnez-Sala, A.S., Pavon-Mario, P., Garca-Haro, J.: Simulation tools for wireless sensor networks. In: Summer Simulation Multiconference - SPECTS (2005)Google Scholar
  14. 14.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40, 102–114 (2002)CrossRefGoogle Scholar
  15. 15.
    Watteyne, T.: Using existing network simulators for power-aware self-organizing wireless sensor network protocols. In: INRIA (2006)Google Scholar
  16. 16.
    Chalhoub, G.: Reseaux de capteurs sans fil. Clermont Universite (2009)Google Scholar
  17. 17.
    Gallais, A., Carle, J., Simplot-Ryl, D.: La k-couverture de surface dans les reseaux de capteurs. In: AlgoTel (2007)Google Scholar
  18. 18.
    Wang, X., Wang, S.H., Bi, D.: Virtual force-directed particle swarm optimization for dynamic deployment in wireless sensor networks. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4681, pp. 292–303. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74171-8_29 CrossRefGoogle Scholar
  19. 19.
    Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse mobile adhoc networks. In: Mobihoc 2004 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.National School of Computer ScienceUniversity of ManoubaManoubaTunisia

Personalised recommendations