Skip to main content

Parametrized Homotopy Theory and Fundamental Groupoids

  • Chapter
  • First Online:
Equivariant Ordinary Homology and Cohomology

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2178))

  • 975 Accesses

Abstract

In general, smooth G-manifolds are not modeled on a single representation V, so, following the geometry, we need a way of encoding the varying local representations that do appear. The machinery for doing this was developed in detail in Costenoble et al. (Homology Homotopy Appl. 3:265–339, 2001) (electronic), Equivariant stable homotopy theory and related areas (Stanford, CA, 2000), where it was used to give a theory of equivariant orientations. It assembles the various local representations into what we call a representation of the fundamental groupoid. The fundamental groupoid \(\Pi _{G}X\) of a G-space X, defined by tom Dieck in Transformation groups, vol 8. Walter de Gruyter & Co., Berlin, 1987, is a category who objects are the maps of orbits GH → X; the morphisms in this category are defined in Sect. 2.1. Representations of the fundamental groupoid can be thought of as the natural dimensions of G-vector bundles or G-manifolds, and provide the grading for the extension of ordinary homology and cohomology we will define in Chap. 3 The material from Costenoble et al. (Homology Homotopy Appl. 3:265–339, 2001) (electronic), Equivariant stable homotopy theory and related areas (Stanford, CA, 2000) that we need is recounted in Sect. 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Brown, Elements of Modern Topology (McGraw-Hill Book Co., New York, 1968). MR MR0227979 (37 #3563)

    Google Scholar 

  2. M. Clapp, Duality and transfer for parametrized spectra. Arch. Math. (Basel) 37 (5), 462–472 (1981). MR MR643290 (83i:55010)

    Google Scholar 

  3. M. Clapp, D. Puppe, The homotopy category of parametrized spectra. Manuscr. Math. 45 (3), 219–247 (1984). MR MR734840 (85c:55007)

    Google Scholar 

  4. S.R. Costenoble, Classifying spaces of bundles of monoids (preprint, 2002)

    Google Scholar 

  5. S.R. Costenoble, S. Waner, Equivariant vector fields and self-maps of spheres. J. Pure Appl. Algebra 187 (1–3), 87–97 (2004). MR MR2027897 (2005a:57026)

    Google Scholar 

  6. S.R. Costenoble, J.P. May, S. Waner, Equivariant orientation theory. Homology Homotopy Appl. 3 (2), 265–339 (2001). (electronic), Equivariant stable homotopy theory and related areas (Stanford, CA, 2000). MR MR1856029 (2002j:55016)

    Google Scholar 

  7. A. Dold, Chern classes in general cohomology, in Symposia Mathematica (INDAM, Rome, 1969/1970), vol. V (Academic, London, 1971), pp. 385–410. MR MR0276968 (43 #2707)

    Google Scholar 

  8. A. Grothendieck, Revêtements Étales et Groupe Fondamental (Springer, Berlin, 1971). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud, Lecture Notes in Mathematics, vol. 224. MR MR0354651 (50 #7129)

    Google Scholar 

  9. H. Hauschild, Äquivariante Transversalität und äquivariante Bordismentheorien. Arch. Math. (Basel) 26 (5), 536–546 (1975). MR 0402787 (53 #6601)

    Google Scholar 

  10. H. Hauschild, Zerspaltung äquivarianter Homotopiemengen. Math. Ann. 230 (3), 279–292 (1977). MR 0500966 (58 #18451)

    Google Scholar 

  11. H. Kleisli, Every standard construction is induced by a pair of adjoint functors. Proc. Am. Math. Soc. 16, 544–546 (1965). MR MR0177024 (31 #1289)

    Google Scholar 

  12. L.G. Lewis Jr., J.P. May, M. Steinberger, Equivariant Stable Homotopy Theory, With contributions by J.E. McClure. Lecture Notes in Mathematics, vol. 1213 (Springer, Berlin, 1986). MR MR866482 (88e:55002)

    Google Scholar 

  13. S. Mac Lane, Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5 (Springer, New York, 1971). MR MR0354798 (50 #7275)

    Google Scholar 

  14. J.P. May, Equivariant Homotopy and Cohomology Theory, With contributions by M. Cole, G. Comezaña, S. Costenoble, A.D. Elmendorf, J.P.C. Greenlees, L.G. Lewis Jr., R.J. Piacenza, G. Triantafillou, S. Waner. CBMS Regional Conference Series in Mathematics, vol. 91 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996). MR MR1413302 (97k:55016)

    Google Scholar 

  15. J.P. May, A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 1999). MR MR1702278 (2000h:55002)

    Google Scholar 

  16. J.P. May, J. Sigurdsson, Parametrized Homotopy Theory. Mathematical Surveys and Monographs, vol. 132 (American Mathematical Society, Providence, RI, 2006). MR MR2271789

    Google Scholar 

  17. R.E. Stong, Notes on Cobordism Theory. Mathematical Notes (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968). MR 0248858 (40 #2108)

    Google Scholar 

  18. R. Street, The formal theory of monads. J. Pure Appl. Algebra 2 (2), 149–168 (1972). MR MR0299653 (45 #8701)

    Google Scholar 

  19. T. tom Dieck, Transformation Groups. de Gruyter Studies in Mathematics, vol. 8 (Walter de Gruyter and Co., Berlin, 1987). MR MR889050 (89c:57048)

    Google Scholar 

  20. A.G. Wasserman, Equivariant differential topology. Topology 8, 127–150 (1969). MR MR0250324 (40 #3563)

    Google Scholar 

  21. K. Wirthmüller, Equivariant homology and duality. Manuscr. Math. 11, 373–390 (1974). MR MR0343260 (49 #8004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Costenoble, S.R., Waner, S. (2016). Parametrized Homotopy Theory and Fundamental Groupoids. In: Equivariant Ordinary Homology and Cohomology. Lecture Notes in Mathematics, vol 2178. Springer, Cham. https://doi.org/10.1007/978-3-319-50448-3_2

Download citation

Publish with us

Policies and ethics