Skip to main content

Self-healed Materials from Elastomeric Composites: Concepts, Strategies and Developments

  • Chapter
  • First Online:
Book cover Smart Polymer Nanocomposites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Self-healing materials have been inspired by the ability of human/animal skins and plant tissues to self-repair their minor damages. Self-healing polymers and fibre-reinforced polymer composites acquire the ability to heal small ruptures and cracks during their service life. Presence of microscopic cracks and other types of damage depletes thermal, electrical, mechanical and acoustical properties, and seriously impairs performance of the material. This can ultimately lead to complete failure. Self-healing materials are imbibed with huge quantities of inorganic conducting fillers to trigger self-healing behaviours which are influenced by external forces, such as temperature, change in light intensity and spectrum, pH, or ambient chemistry. Three conceptual approaches of healing system exists which are based upon encapsulation, arterial network and intrinsic capabilities. Self-healing can be generated intrinsically by auto-response mode without manual intervention or requiring external stimulus. Primarily self-healing mechanisms entail resuming mechanical integration lost during cracking and crazing. As polymers are critical products used in coatings, electronics, transportation and energy industries, it is important to induce them with self-repairing mechanisms. Self-healing materials possess remarkable potential in enhancing the longevity of load bearing and tribological materials. Consequently, a large number of academic and industrial research organizations have come forward to explore new concepts in design and synthesis of such materials like thermosets, thermoplastic, elastomers, polymer composites, supramolecular gels, nanostructure conductive hydrogels. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients augur well for futuristic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, pp 432–494

    Google Scholar 

  2. Shanks RA, Kong I (2013) General purpose elastomers: structure, chemistry, physics and performance, advanced structured materials, vol 11. Springer, Berlin Heidelberg, pp 11–45

    Google Scholar 

  3. Shanks R, Kong I (2012) Thermoplastic elastomers applied sciences. In tech, pp 137–154

    Google Scholar 

  4. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630

    Google Scholar 

  5. Tobolsky AV (1960) Properties and structures of polymers, vol 47(149). Wiley, New York, 1–563

    Google Scholar 

  6. Ellul MD, Gent AN (1984) The role of molecular diffusion in the adhesion of elastomers. J Polym Sci 22:1953–1968

    CAS  Google Scholar 

  7. Castellucci M (2009) Resistive heating for self-healing materials based on ionomeric polymers. Thesis, Virginia Polytechnic Institute and State University

    Google Scholar 

  8. Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinsp Biomim 2:1–9

    Article  Google Scholar 

  9. Ferrulli O (2013) Damage sensing and self-healing materials through microencapsulation process. Thesis, Politecnico Di Milano, pp 1–131

    Google Scholar 

  10. Fratzl P, Weinkamer R (2007) Hierarchical structure and repair of bone: deformation, remodeling, healing. Springer, Netherlands, pp 323–335

    Google Scholar 

  11. Zwaag S (2008) Self-healing materials, an alternative approach to 20 centuries of materials science. Springer Series in Materials Science, Springer Science+Business Media BV

    Google Scholar 

  12. Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos Trans R Soc A 365(1851):303–315

    Article  Google Scholar 

  13. Ghosh SK (ed) (2009) Self-healing materials: fundamentals, design strategies and applications. Wiley-VCH, Weinheim

    Google Scholar 

  14. Harrington MJ, Speck O, Speck T, Wagner S, Weinkamer R (2015) Biological archetypes for self-healing materials, pp 1–38

    Google Scholar 

  15. Zwaag SVD (2007) Modeling of self-healing of skin tissue. Self healing materials. An alternative approach to 20 centuries of materials Science. Springer, Berlin, pp 1–18

    Google Scholar 

  16. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  17. Wilson GO, Andersson HM, White SR, Sottos NR, Moore JS, Braun PV (2010) Self healing polymers, encyclopedia of polymer science and technology. Wiley, New York, p 2

    Google Scholar 

  18. Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  19. Lutz A, De Graeve I, Terryn H (2013) Self-healing coatings and their electrochemical analysis, Research Group of Electrochemical and Surface Engineering

    Google Scholar 

  20. http://sandbox.softroboticstoolkit.com/book/self-healing-materials-0

  21. Kessler MR (2007) Self-healing: a new paradigm in materials design. J Aerosp Eng 221(4):479–495

    CAS  Google Scholar 

  22. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  23. Cordier P, Tournilhac F, Souli´e-Ziakovic C, Leibler L (2008) Self-healing and thermo reversible rubber from supramolecular assembly. Nature 451:977–980

    Article  CAS  Google Scholar 

  24. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585

    Article  CAS  Google Scholar 

  25. Thies C (1987) Microencapsulation. In: Encyclopedia of polymer science and engineering, vol 9. Wiley, New York, pp 724–745

    Google Scholar 

  26. Benita S (2006) Microencapsulation: methods and industrial applications, 2nd edn. CRC Press, New York, p 158

    Google Scholar 

  27. Arshady R (1999) Microspheres, microcapsules and liposomes. Citrus Books, London

    Google Scholar 

  28. Ghosh SK (2006) Functional coatings by polymer microencapsulation. Wiley-VCH Verlag GmbH, Germany

    Book  Google Scholar 

  29. Dry C (1996) Compos Struct 35:263–269

    Article  Google Scholar 

  30. Jung D, Hegeman A, Sottos NR, Geubelle PH, White SR (1997) Self-healing composites using embedded microspheres. Am Soc Mech Eng Mater Div 80:265–275

    CAS  Google Scholar 

  31. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  32. Larin GE, Bernklau N, Kessler MR, DiCesare JC (2006) Rheokinetics of ring-opening metathesis polymerization of norbornene-based monomers intended for self-healing applications. Polym Eng Sci 46:1804–1811

    Article  CAS  Google Scholar 

  33. Rule JD, Moore JS (2002) ROMP Reactivity of endo- and exo-Dicyclopentadiene. Macromolecules 35:7878–7882

    Article  CAS  Google Scholar 

  34. Shansky E (2006) Synthesis and characterization of microcapsules for self-healing materials. Department of Chemistry, Indiana University, Bllomington, pp 515–546

    Google Scholar 

  35. Cho SH, Andersson HM, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000

    Article  CAS  Google Scholar 

  36. Tanasa F, Zanoaga M (2012) Self-healing materials—from design to specific applications. “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania

    Google Scholar 

  37. Dry CM (1995) Adhesive liquid core optical fibers for crack detection and repairs in polymer and concrete matrices. Proc SPIE Int Soc Opt Eng 2444:410–413

    Google Scholar 

  38. Dry CM, McMillan W (1996) Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fiber. Proc SPIE Int Soc Opt Eng 2718:448–451

    Google Scholar 

  39. Motuku M, Vaidya UK, Janowski GM (1999) Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater Struct 8:623–638

    Article  CAS  Google Scholar 

  40. Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis V (2001) A smart repair system for polymer matrix composites. Compos A Appl Sci Manuf 32(12):1767–1776

    Article  Google Scholar 

  41. Bond I, Foreman A, Hudd J (1999) Optimization of hollow glass fibers and their composites. Adv Compos Lett 8(4):181–189

    Google Scholar 

  42. Trask RS, Bond IP (2006) Biomimetic self-healing of advanced composite structures using hollow glass fibers. Smart Mater Struct 15:704–710

    Article  CAS  Google Scholar 

  43. Pang JWC, Bond IP (2005) ‘Bleeding composites’—damage detection and self-repair using a biomimetic approach. Compos A Appl Sci Manuf 36:183–188

    Article  Google Scholar 

  44. Pang JWC, Bond IP (2005) A hollow fiber reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Technol 65:1791–1799

    Article  CAS  Google Scholar 

  45. Williams HR, Trask RS, Bond IP (2006) Vascular self-healing composite sandwich structures. In: 15th US national congress of theoretical and applied mechanics, Boulder, CO, 25–31 June 2006

    Google Scholar 

  46. Williams GJ, Trask RS, Bond IP (2007) A self-healing carbon fiber reinforced polymer for aerospace applications. Compos A Appl Sci Manuf 38(6):1525–1532

    Article  Google Scholar 

  47. Trask RS, Bond IP (2006) Biomimetic self-healing of advanced composite structures using hollow glass fibers. Smart Mater Struct 15(3):704–710

    Article  CAS  Google Scholar 

  48. Adhikari B, De D, Maiti S (2000) Reclamation and recycling of waste rubber. Prog Polym Sci 25(7):909–948

    Article  CAS  Google Scholar 

  49. Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18:41–62

    Article  CAS  Google Scholar 

  50. Bergman SD, Wudl F (2007) Self-healing materials. An alternative approach to 20 centuries of materials science, vol 30(6). Springer, Berlin, pp 45–68

    Google Scholar 

  51. Nasser SN, Plaisted T, Starr A, Amirkhizi AV (2005) Multifunctional materials. In: Biomimetics: biologically inspired technologies. CRC Press, New York

    Google Scholar 

  52. Bouteiller L (2007) Assembly via hydrogen bonds of low molecular mass compounds into supramolecular polymers. Adv Polym Sci 207:79–112

    Article  CAS  Google Scholar 

  53. Lehn JM (2002) Supramolecular polymer chemistry—scope and perspectives. Polym Int 51:825–839

    Article  CAS  Google Scholar 

  54. Weck M (2007) Side-chain functionalized supramolecular polymers. Polym Int 56:453–460

    Article  CAS  Google Scholar 

  55. Shimizu LS (2007) Perspectives on main-chain hydrogen bonded supramolecular polymers. Polym Int 56:444–452

    Article  CAS  Google Scholar 

  56. Beijer FH, Sijbesma RP, Kooijman H, Spek AL, Meijer EW (1998) Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J Am Chem Soc 120:6761

    Article  CAS  Google Scholar 

  57. Ontjens S, Sijbesma SHM, van Genderen MHP, Meijer EW (2001) Selective formation of cyclic dimers in solutions of reversible supramolecular polymers. Macromolecules 34:3815

    Article  Google Scholar 

  58. http://www.suprapolix.com/. Access year 2008

  59. Cordier P, Tournilhac F, Soulie’-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    Article  CAS  Google Scholar 

  60. Andres PR, Schubert US (2004) New functional polymers and materials based on 2,2′:6′,2″-terpyridine metal complexes. Adv Mater 16(13):1043–1068

    Article  CAS  Google Scholar 

  61. Hoogenboom R, Winter A, Marin V, Hofmeier H, Schubert US (2007) American chemical society proceedings

    Google Scholar 

  62. Ristenpart WD, Alesay IA, Saville DA (2007) electrically driven flow near a colloidal particle close to an electrode with a faradaic current. Langmuir 23(7):4071–4080

    Article  CAS  Google Scholar 

  63. Ahn TH, Crack TK (2010) Self-healing behavior of cementitious composites incorporating mineral admixtures. J Adv Concrete Technol 8(2):171–186

    Article  CAS  Google Scholar 

  64. Richard SM, Deepankar B, Suryanarayana PV (2004) Impact of thief zone identification and shut-off on water production in the Nimr field. Society of petroleum engineers paper

    Google Scholar 

  65. Herold BH, Edwards JE, Kujik RV, Froelich B, Marketz F, Welling RWF, Leuranguer C (2006) Evaluating expandable tubular zonal and swelling elastomer isolation using wireline ultrasonic measurements. Society of petroleum engineers paper

    Google Scholar 

  66. Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Kowollik CB (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213:131–143

    Article  CAS  Google Scholar 

  67. http://www.nissanglobal.com/EN/TECHNOLOGY/INTRODUCTION/DETAILS/SGC/index.html. Access year 2008

  68. http://www.research.bayer.com/edition%2016/Self%20healing%20automotive%20coating.aspx. Access year 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tripathi, R., Sharma, P., Saini, A., Verma, G. (2017). Self-healed Materials from Elastomeric Composites: Concepts, Strategies and Developments. In: Ponnamma, D., Sadasivuni, K., Cabibihan, JJ., Al-Maadeed, MA. (eds) Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-50424-7_8

Download citation

Publish with us

Policies and ethics