Skip to main content

Molecular Design Approaches to Self-healing Materials from Polymer and its Nanocomposites

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Recent years have seen an exponential growth in research activities on self-healing materials, with increasing number of research group being involved and new concepts being explored. These mendable materials belong to a class of stimuli-responsive materials that are designed to regain the functionality of the material once it is lost. In this chapter, we stress on the systematic understanding of these functional materials with respect to their mode of interactions, both covalent and non-covalent. We summarize the latest approaches to design self-healing systems, gathering different synthetic strategies and concepts and analyzing the main mechanisms for their functional behaviors. Based on the structural and functional units, we relate to variable healing properties of the materials and potent wider range of applications in designing protective coating, shape memory polymer, adhesives and self-healing for engineering and medical aspects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thakur VK, Kessler MR (2015) Self-healing polymer nano-composite materials: a review. Polymer 69:369–383

    Article  CAS  Google Scholar 

  2. Yuan YC, Yin T, Rang MZ, Zhang MQ (2008) Self-healing in polymers and polymer composites. Concepts, realization and outlook. Express Polym Lett 2(4):238–250

    Article  CAS  Google Scholar 

  3. Bergman SD, Wudl F (2008) Mendable polymer. J Mater Chem 18:41–62

    Article  CAS  Google Scholar 

  4. Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33(5):479–522

    Article  CAS  Google Scholar 

  5. Wool RP (2008) Self-healing materials: a review. Soft Matter 4:400–418

    Article  CAS  Google Scholar 

  6. An SY, Noh SM, Nam JH, Oh JK (2015) Dual sulfide–disulfide cross-linked networks with rapid and room temperature self-healability. Macromol Rapid Commun 36:1255–1260

    Article  CAS  Google Scholar 

  7. Zhang Y, Broekhuis A, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42(6):1906–1912

    Article  CAS  Google Scholar 

  8. Liu YL, Chuoa TW (2013) Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym Chem 4:2194–2205

    Article  CAS  Google Scholar 

  9. Varnoosfaderani MV, Hashmi S, Nejad AG, Stadler FJ (2014) Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron–catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5:512–523

    Article  Google Scholar 

  10. Bag M, Banerjee S, Faust R, Venkataraman D (2016) Self-healing polymer sealant for encapsulating flexible solar cells. Sol Energy Mater Sol Cells 145:418–422

    Article  CAS  Google Scholar 

  11. Shchukin DG (2013) Container-based multifunctional self-healing polymer coatings. Polym Chem 4:4871–4877

    Article  CAS  Google Scholar 

  12. Williams KA, Dreyer DR, Bielawski CW (2008) The underlying chemistry of self-healing materials. MRS Bull 33(8):759–765

    Article  CAS  Google Scholar 

  13. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  14. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585

    Article  CAS  Google Scholar 

  15. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702

    Article  CAS  Google Scholar 

  16. Chen X, Wudl F, Mal A, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6):1802–1807

    Article  CAS  Google Scholar 

  17. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    Article  CAS  Google Scholar 

  18. Gao L, He J, Hu J, Wang C (2015) Photo-responsive self-healing polymer composite with photo-absorbing hybrid microcapsules. ACS Appl Mater Interfaces 7:25546–25552

    Article  CAS  Google Scholar 

  19. Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng H (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24:2322–2333

    Article  CAS  Google Scholar 

  20. Ahn BK, Lee DW, Israelachvili JN, Waite JH (2014) Surface-initiated self-healing of polymers in aqueous media. Nat Mater 13:867–872

    Article  CAS  Google Scholar 

  21. ten Cate AT, Sijbesma RP (2003) Coils, rods and rings in hydrogen-bonded supramolecular polymers. Macromol Rapid Commun 23(18):1094–1112

    Article  Google Scholar 

  22. Yang X, Yu H, Wang L, Tong R, Akram M, Chen Y, Zhai X (2015) Self-healing polymer materials constructed by macrocycle-based host–guest interactions. Soft Matter 11:1242–1252

    Article  CAS  Google Scholar 

  23. Chuo TW, Wei TC, Liu YL (2013) Electrically driven self-healing polymers based on reversible guest-host complexation of β-cyclo-dextrin and ferrocene. J Polym Sci, Part A: Polym Chem 51:3395–3403

    Article  CAS  Google Scholar 

  24. Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A (2013) Pre-organized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater 25:2849–2853

    Article  CAS  Google Scholar 

  25. Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F (2012) Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew Chem Int Ed 51(28):7011–7015

    Article  CAS  Google Scholar 

  26. McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24(18):2706–2713

    Article  CAS  Google Scholar 

  27. Guo DS, Liu Y (2012) Calixarene-based supramolecular polymerization in solution. Chem Soc Rev 41:5907–5921

    Article  CAS  Google Scholar 

  28. Zhang H, Zhao Y (2013) Pillararene-based assemblies: design principle, preparation and applications. Eur J Chem 19(50):16862–16879

    Article  CAS  Google Scholar 

  29. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  30. Lutz JF (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23(19):2237–2243

    Article  CAS  Google Scholar 

  31. Credico BD, Levi M, Turri S (2013) An efficient method for the output of new self-repairing materials through a reactive isocyanate encapsulation. Eur Polymer J 49(9):2467–2476

    Article  Google Scholar 

  32. Chen Y, Kushner AM, Williams GA, Guan Z (2012) Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem 4:467–472

    Article  CAS  Google Scholar 

  33. Hentschel J, Kushner AM, Ziller J, Guan Z (2012) Self-healing supramolecular block copolymers. Angew Chem Int Ed 51(42):10561–10565

    Article  CAS  Google Scholar 

  34. Hou S, Ma PX (2015) Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem Mater 27(22):7627–7635

    Article  CAS  Google Scholar 

  35. Bode S, Zedler L, Schacher FH, Dietzek B, Schmitt M, Popp J, Hager MD, Schubert US (2013) Self-healing polymer coatings based on cross-linked metallosupramolecular copolymers. Adv Mater 25(11):1634–1638

    Article  CAS  Google Scholar 

  36. Kotteritzsch J, Hager MD, Schubert US (2015) Tuning the self-healing behavior of one-component intrinsic polymers. Polymer 69:321–329

    Article  Google Scholar 

  37. Syrett JA, Mantovani G, Barton WRS, Price D, Haddleton DM (2010) Self-healing polymers prepared via living radical polymerisation. Polymer Chemistry 1:102–106

    Article  CAS  Google Scholar 

  38. Kennedy JP, Castner KF (1979) Thermally reversible polymer systems by cyclopentadienylation. II. The synthesis of cyclopentadiene-containing polymers. J Polym Sci, Part A: Polym Chem 17(7):2055–2070

    CAS  Google Scholar 

  39. Yoon JA, Kamada J, Koynov K, Mohin J, Nicolay R, Zhang Y, Balazs AC, Kowalewski T, Matyjaszewski K (2012) Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142–149

    Article  CAS  Google Scholar 

  40. Roy N, Buhler E, Lehn JM (2014) Double dynamic self-healing polymers: supramolecular and covalent dynamic polymers based on the bis-iminocarbohydrazide motif. Polym Int 63(8):1400–1405

    Article  CAS  Google Scholar 

  41. Kuhl N, Bode S, Bose RK, Vitz J, Seifert A, Hoeppener S, Garcia SJ, Spange S, Zwaag S, Hager MD, Schubert US (2015) Acylhydrazones as reversible covalent cross linkers for self-healing polymers. Adv Funct Mater 25:3295–3301

    Article  CAS  Google Scholar 

  42. Banerjee S, Tripathy R, Cozzens D, Nagy T, Keki S, Zsuga M, Faust R (2015) Photo-induced smart, self-healing polymer sealant for photovoltaics. ACS Appl Mater Interfaces 7:2064–2072

    Article  CAS  Google Scholar 

  43. Schafer S, Kickelbick G (2015) Self-healing polymer nano-composites based on Diels-Alder reactions with silica nanoparticles: the role of the polymer matrix. Polymer 69:357–368

    Article  Google Scholar 

  44. Guo K, Zhang DL, Zhang XM, Zhang J, Ding LS, Li BJ, Zhang S (2015) Conductive elastomers with autonomic self-healing properties. Angew Chem Int Ed 54:12127–12133

    Article  CAS  Google Scholar 

  45. Wang S, Xuan S, Jiang W, Jiang W, Yan L, Mao Y, Liua M, Gong X (2015) Rate-dependent and self-healing conductive shear stiffening nanocomposite: a novel safe-guarding material with force sensitivity. J Mater Chem A 3:19790–19799

    Article  CAS  Google Scholar 

  46. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  CAS  Google Scholar 

  47. Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34:1002–1007

    Article  CAS  Google Scholar 

  48. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  49. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  50. Zhu B, Jasinski N, Benitez A, Noack M, Park D, Goldmann AS, Barner-Kowollik C, Walther A (2015) Hierarchical nacre mimetics with synergistic mechanical properties by control of molecular interactions in self-healing polymers. Angew Chem Int Ed 54:8653–8657

    Article  CAS  Google Scholar 

  51. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343

    Article  CAS  Google Scholar 

  52. Lewis CL, Dell EM (2016) A review of shape memory polymers bearing reversible binding groups. J Polym Sci, Part B: Polym Phys 54(14):1340–1364

    Article  CAS  Google Scholar 

  53. Wei M, Zhan M, Yu D, Xie H, He M, Yang K, Wang Y (2014) Novel poly(tetramethylene ether)glycol and poly(ε-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity. ACS Appl Mater Interfaces 7(4):2585–2596

    Article  Google Scholar 

  54. Hennink WE, Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–36

    Article  CAS  Google Scholar 

  55. Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602–606

    Article  CAS  Google Scholar 

  56. Engelmayr GC, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010

    Article  CAS  Google Scholar 

  57. Chen Q, Liang S, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38:584–671

    Article  CAS  Google Scholar 

  58. Najafabadi AH, Tamayol A, Annabi N, Ochoa M, Mostafalu P, Akbari M, Nikkhah M, Rahimi R, Dokmeci MR, Sonkusale S, Ziaie B, Khademhosseini A (2014) Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Adv Mater 26(33):5823–5830

    Article  CAS  Google Scholar 

  59. White MS, Kaltenbrunner M, Głowacki ED, Gutnichenko K, Kettlgruber G, Graz I, Aazou S, Ulbricht C, Egbe DAM, Miron MC, Major Z, Scharber MC, Sekitani T, Someya T, Bauer S, Sariciftci NS (2013) Ultrathin, highly flexible and stretchable PLEDs. Nat Photonics 7:811–816

    Article  CAS  Google Scholar 

  60. Dankers PYW, Hermans TM, Baughman TW, Kamikawa Y, Kieltyka RE, Bastings MMC, Janssen HM, Sommerdijk NAJM, Larsen A, Luyn MJA, Bosman AW, Popa ER, Fytas G, Meijer EW (2012) Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv Mater 24(20):2703–2709

    Article  CAS  Google Scholar 

  61. Chen Y, Pang XH, Dong CM (2010) Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv Funct Mater 20(4):579–586

    Article  CAS  Google Scholar 

  62. Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F (2012) A multi-responsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv Mater 24(3):362–369

    Article  CAS  Google Scholar 

  63. Jia YG, Zhu XX (2015) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27(1):387–393

    Article  CAS  Google Scholar 

  64. Ceylan H, Urel M, Erkal TS, Tekinay AB, Dana A, Guler MO (2013) Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network. Adv Funct Mater 23(16):2081–2090

    Article  CAS  Google Scholar 

  65. Park JP, Song IT, Lee J, Ryu JH, Lee Y, Lee H (2015) Vanadyl-catecholamine hydrogels inspired by ascidians and mussels. Chem Mater 27(1):105–111

    Article  CAS  Google Scholar 

  66. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun 2:511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asish Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Joseph, J.P., Singh, A., Pal, A. (2017). Molecular Design Approaches to Self-healing Materials from Polymer and its Nanocomposites. In: Ponnamma, D., Sadasivuni, K., Cabibihan, JJ., Al-Maadeed, MA. (eds) Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-50424-7_7

Download citation

Publish with us

Policies and ethics