Skip to main content

Self-healing Polymer Composites Based on Graphene and Carbon Nanotubes

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Self-healing is a bioinspired concept as nature itself is filled with self-healable composites. For the last 15 years, immense curiosity has been developed in materials that can self-heal for real engineering applications such as aerospace and sporting goods, electronics, and robotics, as this property can improve the longevity of the materials, diminish replacement costs, and improve safety. In materials technology, structural polymer composites are vulnerable to damage, failure, and degradation. Cracks are formed deep within the structure, and hence, it is not easy to detect such cracks and their repair is unfeasible. Self-healing is a microscale bottom-up approach which provides the ability to repair degradation and heal these cracks while still achieving the structural strength requirement. All types of polymers, from thermosetting polymers to thermoplastics, have the potential for self-healing. Self-healing approach can be successfully applied using various approaches such as microencapsulation of the healing agent and vascular impregnation of self-healing materials in tubular networks, but all these extrinsic approaches result in a considerable loss of mechanical strength, while in intrinsic approach, the healing capability is latent in the material itself. The healing is achieved by reversible bonding in the matrix polymer. Carbon nanotubes (CNTs) and graphene have immense hope in this world of smart and multifunctional materials and can be used as nanofillers to obtain nanocomposites of extraordinary mechanical, electrical, thermal, and self-healing properties with the added advantage of lower weight. Their good compatibility with polymer resulting after surface modification of CNTs and graphene, achieving the desirable chemical stability added with outstanding thermal and electrical properties place them as the appropriate and the nascent research topic for self-healing polymer nanocomposites. This chapter initially gives a brief idea about the basic concepts and then examines the different approaches to self-healing techniques along with the various self-healing assessment terms and concepts. This chapter then revolves around the different self-healing nanocomposites based on graphene using various polymers such as polyurethane and epoxy and even hydrogel composites. The characterization of the self-healing systems and analysis of the exact mechanism taking place using different triggering mechanisms is discussed. Then, the various CNT-based self-healing nanocomposites are encompassed. The efficient utilization of CNTs as reinforcement filler and as the healing agent in extrinsic approach is discussed. Then, the utilization of CNTs to fabricate self-healing nanocomposites for a variety of end applications is discussed. The various results on healable multifunctional CNTs and graphene-based polymer nanocomposites are summarized in a tabular form. Finally, the challenges and future research opportunities are highlighted in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Malinskii YM, Prokopenko V, Ivanova N, Kargin V (1970) Investigation of self-healing of cracks in polymers. Polym Mech 6(2):240–244

    Article  Google Scholar 

  2. Wool RP (1980) Crack healing in semicrystalline polymers, block copolymers and filled elastomers. In: Adhesion and adsorption of polymers. Springer, Berlin, pp 341–362

    Google Scholar 

  3. Wool R, O’connor K (1981) A theory crack healing in polymers. J Appl Phys 52(10):5953–5963

    Article  CAS  Google Scholar 

  4. Dry C (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater Struct 3(2):118

    Article  CAS  Google Scholar 

  5. White SR, Sottos N, Geubelle P, Moore J, Kessler MR, Sriram S, Brown E, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    Article  CAS  Google Scholar 

  6. Kessler M (2007) Self-healing: a new paradigm in materials design, proceedings of the institution of mechanical engineers. Part G. J Aerosp Eng 221(4):479–495

    Google Scholar 

  7. Blaiszik B, Kramer S, Olugebefola S, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  8. Yuan Y, Yin T, Rong M, Zhang M (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Polym Lett 2(4):238–250

    Google Scholar 

  9. Wang Z, Yang Y, Burtovyy R, Luzinov I, Urban MW (2014) UV-induced self-repairing polydimethylsiloxane–polyurethane (PDMS–PUR) and polyethylene glycol–polyurethane (PEG–PUR) Cu-catalyzed networks. J Mater Chem A 2(37):15527–15534

    Article  CAS  Google Scholar 

  10. Ling J, Rong MZ, Zhang MQ (2012) Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. Polymer 53(13):2691–2698

    Article  CAS  Google Scholar 

  11. Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472(7343):334–337

    Article  CAS  Google Scholar 

  12. Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832

    Article  CAS  Google Scholar 

  13. Herbst F, Döhler D, Michael P, Binder WH (2013) Self-healing polymers via supramolecular forces. Macromol Rapid Commun 34(3):203–220

    Article  CAS  Google Scholar 

  14. Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18(1):41–62

    Article  CAS  Google Scholar 

  15. Fall RA (2001) Puncture reversal of polyethylene ionomers-mechanistic studies

    Google Scholar 

  16. Huber A, Hinkley JA (2005) Impression testing of self-healing polymers. NASA Tech Man 213532

    Google Scholar 

  17. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  18. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    Article  CAS  Google Scholar 

  19. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  20. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884

    Article  CAS  Google Scholar 

  21. Graham AP, Duesberg GS, Hoenlein W, Kreupl F, Liebau M, Martin R, Rajasekharan B, Pamler W, Seidel R, Steinhoegl W, Unger E (2005) How do carbon nanotubes fit into the semiconductor roadmap? Appl Phys A 80(6):1141–1151

    Article  CAS  Google Scholar 

  22. Lee G-H, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J (2013) High-strength chemical-vapor—deposited graphene and grain boundaries. Science 340(6136):1073–1076

    Article  CAS  Google Scholar 

  23. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049

    Article  Google Scholar 

  24. Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1(32):9138–9149

    Article  CAS  Google Scholar 

  25. Farukh M, Dhawan R, Singh BP, Dhawan S (2015) Sandwich composites of polyurethane reinforced with poly(3,4-ethylene dioxythiophene)-coated multiwalled carbon nanotubes with exceptional electromagnetic interference shielding properties. RSC Adv 5(92):75229–75238

    Article  CAS  Google Scholar 

  26. Verma M, Verma P, Dhawan S, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5(118):97349–97358

    Article  CAS  Google Scholar 

  27. Mathur R, Pande S, Singh B, Dhami T (2008) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Compos 29(7):717–727

    Article  CAS  Google Scholar 

  28. Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161(15):1522–1526

    Article  CAS  Google Scholar 

  29. Shahzad F, Yu S, Kumar P, Lee J-W, Kim Y-H, Hong SM, Koo CM (2015) Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos Struct 133:1267–1275

    Article  Google Scholar 

  30. Han Y, Wang T, Gao X, Li T, Zhang Q (2016) Preparation of thermally reduced graphene oxide and the influence of its reduction temperature on the thermal, mechanical, flame retardant performances of PS nanocomposites. Compos A Appl Sci Manuf 84:336–343

    Article  CAS  Google Scholar 

  31. Babal A, Gupta R, Singh B, Singh V, Mathur R, Dhakate S (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by industrial viable twin screw extruder with back flow channel. RSC Adv 4:64649–64658

    Article  CAS  Google Scholar 

  32. Jindal P, Pande S, Sharma P, Mangla V, Chaudhury A, Patel D, Singh BP, Mathur RB, Goyal M (2013) High strain rate behavior of multi-walled carbon nanotubes-polycarbonate composites. Compos B Eng 45(1):417–422

    Article  CAS  Google Scholar 

  33. Pande S, Singh BP, Mathur RB (2014) Processing and properties of carbon nanotube/polycarbonate composites, polymer nanotube nanocomposites: synthesis, properties, and applications, 2nd ed. Wiley, New Jersey, pp 333–364

    Google Scholar 

  34. Gedler G, Antunes M, Velasco J, Ozisik R (2016) Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Mater Des 90:906–914

    CAS  Google Scholar 

  35. Shen B, Zhai W, Tao M, Lu D, Zheng W (2013) Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos Sci Technol 86:109–116

    Article  CAS  Google Scholar 

  36. Jyoti J, Basu S, Singh B, Dhakate S (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B Eng 83:58–65

    Article  CAS  Google Scholar 

  37. Gao C, Zhang S, Wang F, Wen B, Han C, Ding Y, Yang M (2014) Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfaces 6(15):12252–12260

    Article  CAS  Google Scholar 

  38. Sharma S, Gupta V, Tandon R, Sachdev V (2016) Synergic effect of graphene and MWCNT fillers on electromagnetic shielding properties of graphene–MWCNT/ABS nanocomposites. RSC Adv 6(22):18257–18265

    Article  CAS  Google Scholar 

  39. Pande S, Singh B, Mathur R, Dhami T, Saini P, Dhawan S (2009) Improved electromagnetic interference shielding properties of MWCNT–PMMA composites using layered structures. Nanoscale Res Lett 4(4):327–334

    Article  CAS  Google Scholar 

  40. Li X, McKenna GB, Miquelard-Garnier G, Guinault A, Sollogoub C, Regnier G, Rozanski A (2014) Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites. Polymer 55(1):248–257

    Article  CAS  Google Scholar 

  41. Zeng X, Yang J, Yuan W (2012) Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J 48(10):1674–1682

    Article  CAS  Google Scholar 

  42. Singh BP, Saini P, Gupta TK, Garg P, Kumar G, Pande I, Pande S, Seth RK, Dhawan SK, Mathur RB (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J Nanopart Res 13(12):7065–7074

    Article  CAS  Google Scholar 

  43. Fim FC, Basso NR, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128(5):2630–2637

    Article  CAS  Google Scholar 

  44. Rajput S, Singh BP, Jyoti J, Dhakate SR (2015) Utilization of polymer wastes using multiwalled carbon nanotubes as a reinforcing filler to make strong value added products. Mater Focus 4(3):213–218

    Article  CAS  Google Scholar 

  45. Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth R, Tandon R, Mathur RB (2010) Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J Polym Res 18(6):1397–1407

    Article  Google Scholar 

  46. Singh BP, Saini K, Choudhary V, Teotia S, Pande S, Saini P, Mathur RB (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16(1):1–11

    Article  Google Scholar 

  47. Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  CAS  Google Scholar 

  48. Park YT, Qian Y, Chan C, Suh T, Nejhad MG, Macosko CW, Stein A (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25(4):575–585

    Article  CAS  Google Scholar 

  49. Mathur RB, Singh BP, Dhami T, Kalra Y, Lal N, Rao R, Rao AM (2010) Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites. Polym Compos 31(2):321–327

    CAS  Google Scholar 

  50. Teotia S, Singh BP, Elizabeth I, Singh VN, Ravikumar R, Singh AP, Gopukumar S, Dhawan S, Srivastava A, Mathur R (2014) Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv 4(63):33168–33174

    Article  CAS  Google Scholar 

  51. Liu Y-Z, Li Y-F, Yang Y-G, Wen Y-F, Wang M-Z (2013) Preparation and properties of graphene oxide–carbon fiber/phenolic resin composites. Carbon 52:624

    Article  CAS  Google Scholar 

  52. Özçelik VO, Gurel HH, Ciraci S (2013) Self-healing of vacancy defects in single-layer graphene and silicene. Phys Rev B 88(4):045440

    Article  Google Scholar 

  53. Botari T, Paupitz R, da Silva Autreto PA, Galvao DS (2016) Graphene healing mechanisms: a theoretical investigation. Carbon 99:302–309

    Article  CAS  Google Scholar 

  54. Bangert U, Zan R, Ramasse Q, Novoselov K (2012) Graphene re-knits its holes. Nano Letters 12(8):3936–3940

    Google Scholar 

  55. Zan R, Ramasse QM, Bangert U, Novoselov KS (2012) Graphene reknits its holes. Nano Lett 12(8):3936–3940

    Article  CAS  Google Scholar 

  56. Zhu J, Shi D (2013) A possible self-healing mechanism in damaged graphene by heat treatment. Comput Mater Sci 68:391–395

    Article  CAS  Google Scholar 

  57. Xu Z-C, Zhong W-R (2014) Probability of self-healing in damaged graphene bombarded by fullerene. Appl Phys Lett 104(26):261907

    Article  Google Scholar 

  58. Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1(2). doi:10.4236/graphene.2012.12005

  59. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  60. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927

    Article  CAS  Google Scholar 

  61. He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772

    Article  CAS  Google Scholar 

  62. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  Google Scholar 

  63. Fan Y, Yang H, Li M, Zou G (2009) Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys 115(2):696–698

    Article  CAS  Google Scholar 

  64. Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24(45):5979–6004

    Article  CAS  Google Scholar 

  65. Huang L, Yi N, Wu Y, Zhang Y, Zhang Q, Huang Y, Ma Y, Chen Y (2013) Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv Mater 25(15):2224–2228

    Article  CAS  Google Scholar 

  66. Kim JT, Kim BK, Kim EY, Kwon SH, Jeong HM (2013) Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites. Eur Polym J 49(12):3889–3896

    Article  CAS  Google Scholar 

  67. Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J Am Chem Soc 132(34):12051–12058

    Article  CAS  Google Scholar 

  68. Jastrzebski ZD (1977) The nature and properties of engineering materials. Wiley, New Jersey

    Google Scholar 

  69. Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13(8):3664–3670

    Article  CAS  Google Scholar 

  70. Thakur S, Karak N (2015) A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J Chem 39(3):2146–2154

    Article  CAS  Google Scholar 

  71. Chen Y, Gao P, Zhu C, Wang R, Wang L, Cao M, Fang X (2009) Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J Appl Phys 106(5):054303

    Article  Google Scholar 

  72. Thakur S, Karak N (2015) Tuning of sunlight-induced self-cleaning and self-healing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2–reduced graphene oxide nanohybrid. J Mater Chem A 3(23):12334–12342

    Article  CAS  Google Scholar 

  73. Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114(30):12955–12959

    Article  CAS  Google Scholar 

  74. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902

    Article  CAS  Google Scholar 

  75. http://www.grandviewresearch.com/press-release/global-epoxy-resins-market (2015)

  76. Yin T, Rong MZ, Zhang MQ, Yang GC (2007) Self-healing epoxy composites—preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol 67(2):201–212

    Article  CAS  Google Scholar 

  77. Xiao DS, Yuan YC, Rong MZ, Zhang MQ (2009) Self-healing epoxy based on cationic chain polymerization. Polymer 50(13):2967–2975

    Article  CAS  Google Scholar 

  78. Xiao X, Xie T, Cheng Y-T (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514

    Article  CAS  Google Scholar 

  79. Wang C, Liu N, Allen R, Tok JBH, Wu Y, Zhang F, Chen Y, Bao Z (2013) A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv Mater 25(40):5785–5790

    Article  CAS  Google Scholar 

  80. Dong J, Ding J, Weng J, Dai L (2013) Graphene enhances the shape memory of poly(acrylamide-co-acrylic acid) grafted on graphene. Macromol Rapid Commun 34(8):659–664

    Article  CAS  Google Scholar 

  81. Zhu Y, Yao C, Ren J, Liu C, Ge L (2015) Graphene improved electrochemical property in self-healing multilayer polyelectrolyte film. Colloids Surf A 465:26–31

    Article  CAS  Google Scholar 

  82. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    Article  CAS  Google Scholar 

  83. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Article  Google Scholar 

  84. Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364–2371

    Article  CAS  Google Scholar 

  85. Das S, Irin F, Ma L, Bhattacharia SK, Hedden RC, Green MJ (2013) Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interf 5(17):8633–8640

    Article  CAS  Google Scholar 

  86. Hou C, Duan Y, Zhang Q, Wang H, Li Y (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22(30):14991–14996

    Article  CAS  Google Scholar 

  87. Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362

    Article  CAS  Google Scholar 

  88. Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007

    Article  CAS  Google Scholar 

  89. Zhang E, Wang T, Zhao L, Sun W, Liu X, Tong Z (2014) Fast self-healing of graphene oxide-hectorite clay-poly(N,N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation. ACS Appl Mater Interf 6(24):22855–22861

    Article  CAS  Google Scholar 

  90. Li J, Zhang G, Deng L, Zhao S, Gao Y, Jiang K, Sun R, Wong C (2014) In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J Mater Chem A 2(48):20642–20649

    Article  CAS  Google Scholar 

  91. Cui W, Ji J, Cai Y-F, Li H, Ran R, Robust (2015) Anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment. J Mater Chem A 3(33):17445–17458

    Article  CAS  Google Scholar 

  92. Lanzara G, Yoon Y, Liu H, Peng S, Lee W (2009) Carbon nanotube reservoirs for self-healing materials. Nanotechnology 20(33):335704

    Article  CAS  Google Scholar 

  93. Sinha-Ray S, Pelot D, Zhou Z, Rahman A, Wu X-F, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22(18):9138–9146

    Article  CAS  Google Scholar 

  94. Bailey BM, Leterrier Y, Garcia S, Van Der Zwaag S, Michaud V (2015) Electrically conductive self-healing polymer composite coatings. Prog Org Coat 85:189–198

    Article  CAS  Google Scholar 

  95. Ahangari MG, Fereidoon A (2015) Micromechanical properties and morphologies of self-healing epoxy nanocomposites with microencapsulated healing agent. Mater Chem Phys 151:112–118

    Article  CAS  Google Scholar 

  96. Aissa B, Haddad E, Jamroz W, Hassani S, Farahani R, Merle P, Therriault D (2012) Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications. Smart Mater Struct 21(10):105028

    Article  Google Scholar 

  97. Guo K, Zhang DL, Zhang XM, Zhang J, Ding LS, Li BJ, Zhang S (2015) Conductive elastomers with autonomic self-healing properties. Angew Chem 127(41):12295–12301

    Article  Google Scholar 

  98. Yang W, Song J, Wu X, Wang X, Liu W, Qiu L, Hao W (2015) High-efficiency self-healing conductive composites from HPAMAM and CNTs. J Mater Chem A 3(23):12154–12158

    Article  CAS  Google Scholar 

  99. Wang S, Xuan S, Jiang W, Jiang W, Yan L, Mao Y, Liu M, Gong X (2015) Rate-dependent and self-healing conductive shear stiffening nanocomposite: a novel safe-guarding material with force sensitivity. J Mater Chem A 3(39):19790–19799

    Article  CAS  Google Scholar 

  100. Bai S, Sun C, Yan H, Sun X, Zhang H, Luo L, Lei X, Wan P, Chen X (2015) Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11(43):5807–5813

    Article  CAS  Google Scholar 

  101. Hsu S-H, Wu M-C, Chen S, Chuang C-M, Lin S-H, Su W-F (2012) Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon 50(3):896–905

    Article  CAS  Google Scholar 

  102. Li J (2010) Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater 2:112–118

    Article  Google Scholar 

  103. Du R, Wu J, Chen L, Huang H, Zhang X, Zhang J (2014) Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels. Small 10(7):1387–1393

    Article  CAS  Google Scholar 

  104. Li B, Zhang J (2015) Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings. Carbon 93:648–658

    Article  CAS  Google Scholar 

  105. Li G, John M (2008) A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol 68(15):3337–3343

    Article  CAS  Google Scholar 

  106. Roy S, Baral A, Banerjee A (2013) An amino-acid-based self-healing hydrogel: modulation of the self-healing properties by incorporating carbon-based nanomaterials. Chem A Eur J 19(44):14950–14957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pati, S., Singh, B.P., Dhakate, S.R. (2017). Self-healing Polymer Composites Based on Graphene and Carbon Nanotubes. In: Ponnamma, D., Sadasivuni, K., Cabibihan, JJ., Al-Maadeed, MA. (eds) Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-50424-7_5

Download citation

Publish with us

Policies and ethics