Skip to main content

Shape Memory Behavior of Conducting Polymer Nanocomposites

  • Chapter
  • First Online:
Smart Polymer Nanocomposites

Abstract

The remarkable advances in the area of shape memory devices during the past few decades have triggered wide applications in numerous areas ranging from aerospace to household products and from civil engineering to biomedical fields. Shape memory metals, alloys, polymers, and composites are mainly used in fabricating many useful products; more significance is given to the polymers and its composites due to their lightweight, low cost, easy processability, and large strain. The electroactivity and the electrical conductivity of polymer composites are also correlated with this shape memory behavior. The current chapter is specifically prepared to address the various electrically conducting polymers and their composites applied in shape memory devices. A brief introduction to shape memory effect, conducting polymers, and the composite fabrication, followed by discussion about the conducting additives and applicability of conducting composites in shape memory, is provided in this chapter. It will also provide a review of the up-to-date information on this specific topic of conducting composites in shape memory, and the challenges need to be solved for their potential future advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  CAS  Google Scholar 

  2. Vechambre C, Buleon A, Chaunier L, Gauthier C, Lourdin D (2011) Understanding the mechanisms involved in shape memory starch: macromolecular orientation. Stress recovery and molecular mobility. Macromolecules 44(23):9384–9389

    Article  CAS  Google Scholar 

  3. Du FP, Ye EZ, Yang W, Shen TH, Tang CY, Xie XL, Zhou XP, Law WC (2015) Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites. Compos B 68:170–175

    Article  CAS  Google Scholar 

  4. Lau KT, Wong TT, Leng JS, Hui D, Rhee KY (2013) Property enhancement of polymer based composites at cryogenic environment by using tailored carbon nanotubes. Compos Part B 54:41–43

    Article  CAS  Google Scholar 

  5. Jiang Q, Wang X, Zhu YT, Hui D, Qiu YP (2014) Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos Part B 56:408–412

    Article  CAS  Google Scholar 

  6. Du FP, Ye EZ, Tang CY, Ng SP, Zhou XP, Xie XL (2013) Microstructure and shape memory effect of acidic carbon nanotubes reinforced polyvinyl alcohol nanocomposites. J Appl Polym Sci 129(3):1299–1305

    Article  CAS  Google Scholar 

  7. Higgins MJ, Grosse W, Wagner K, Molino PJ, Wallace GG (2011) Reversible shape memory of nanoscale deformations in inherently conducting polymers without reprogramming. J Phys Chem B 115:3371–3378

    Article  CAS  Google Scholar 

  8. Sahoo NG, JungYC Goo NS, Cho JW (2005) Conducting shape memory polyurethane-polypyrrole composites for an electroactive actuator. Macromol Mater Eng 290:1049–1055

    Article  CAS  Google Scholar 

  9. Rana S, Kim SD, Cho JW (2013) Conducting core-sheath nanofibers for electroactive shape-memory applications. Polym Adv Technol 24:609–614

    Article  CAS  Google Scholar 

  10. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S (2015) 3D Printing of shape memory polymers for flexible electronic devices. Adv Mater 28(22):4449–4454

    Article  Google Scholar 

  11. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10(4):20–28

    Article  CAS  Google Scholar 

  12. Ni QQ, Zhang C, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81(2):176–184

    Article  Google Scholar 

  13. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  CAS  Google Scholar 

  14. Gurunathan K, Vadivel Murugan A, Marimuthu R, Mulik UP, Amalnerkar DP (1991) Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 61:173–191

    Article  Google Scholar 

  15. Sadasivuni KK, Ponnamma D, Kasak P, Krupa I, Al-Maadeed MASA (2014) Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites. Mater Chem Phys 147(3):1029–1036

    Article  CAS  Google Scholar 

  16. Inzelt G (2008) Chemical and electrochemical syntheses of conducting polymers. In: Conducting polymers, a new era in electrochemistry. Springer, Berlin

    Google Scholar 

  17. Kesik M, Akbulut H, Söylemez S et al (2014) Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polym Chem 5:6295–6306

    Article  CAS  Google Scholar 

  18. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780

    Article  CAS  Google Scholar 

  19. Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotube based elastomer composites–an approach towards multifunctional materials. J Mat Chem C 2(40):8446–8485

    Article  CAS  Google Scholar 

  20. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  21. Riaz U, Ashraf SM (2013) Conductive polymer composites and blends: recent trends. In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Nanostructured polymer blends. Elsevier, Amsterdam

    Google Scholar 

  22. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: Towards a smart biomaterial for tissue engineering. Actabiomaterialia 10:2341–2353

    CAS  Google Scholar 

  23. Olad A, Rashidzadeh A (2008) Preparation and characterization of polyaniline/CaCO3 composite and its application as anticorrosive coating on iron. Iran J Chem Eng 5(2):45–54

    Google Scholar 

  24. Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszk JK (2007) Electrical and mechanical properties of carbon nanotube/ ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polym Sci 105(1):158–168

    Article  CAS  Google Scholar 

  25. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898

    Article  CAS  Google Scholar 

  26. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  27. Lu J, Moon KS, Wong CP (2008) Silver/polymer nanocomposite as a high-k polymer matrix for dielectric composites with improved dielectric performance. J Mater Chem 18:4821–4826

    Article  CAS  Google Scholar 

  28. Gök A, Sarı B, Talu M (2003) Synthesis and characterization of novel polyfuran/poly(2-iodoaniline) conducting composite. J Appl Polym Sci 89(10):2823–2830

    Article  Google Scholar 

  29. Ahmed F, Kumar S, Arshi N, Anwar MS, Su-Yeon L, Kil GS, Park DW, Koo BH, Lee CG (2011) Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 519(23):8375–8378

    Article  CAS  Google Scholar 

  30. Thomas D, Simon SA, Sadasivuni KK, Ponnamma D, Yaser AA, Cabibihan JJ, Vijayalakshmi KA (2016) Microtron irradiation induced tuning of band gap and photoresponse of Al-ZnO thin films synthesized by mSILAR. J Electron Mat 1–7

    Google Scholar 

  31. Marcovich NE, Auad ML, Bellesi NE, Nutt SR, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21(04):870–881

    Article  CAS  Google Scholar 

  32. Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LHC, Mosiewicki MA, Marcovich NE, Aranguren MI (2011) Polyaniline modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polym Int 60(5):743–750

    Article  CAS  Google Scholar 

  33. Casado UM, Quintanilla RM, Aranguren MI, Marcovich NE (2012) Composite films based on shape memory polyurethanes and nanostructured polyaniline or cellulose–polyaniline particles. Synth Met 162(17–18):1654–1664

    Article  CAS  Google Scholar 

  34. Sattar R, Kausar A, Siddiq M (2016) Influence of conducting polymer on mechanical, thermal and shape memory properties of polyurethane/polythiophene blends and nanocomposites. Adv Mater Lett 7(4):282–288

    Article  Google Scholar 

  35. Li H, Zhong Z, Meng J, Xian G (2013) The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos B Eng 44(1):508–516

    Article  CAS  Google Scholar 

  36. Tobushi H, Hayahi S, Ikai A, Hara H, Miwa N (1996) Shape fixity and shape recoverability in a film of shape memory polymer of the polyurethane series. Trans Jpn Soc Mech Eng A 62:1291–1298

    Article  Google Scholar 

  37. Ohki T, Ni QQ, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos A 35:1065–1073

    Article  Google Scholar 

  38. Yu K, Zhang Z, Liu Y, Leng J (2011) Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity. Appl Phys Lett 98:074102

    Article  Google Scholar 

  39. Li C, Qiu L, Zhang B, Li D, Liu CY (2016) Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv Mater 28(7):1510–1516

    Article  CAS  Google Scholar 

  40. Das R, Banerjee SL, Kundu PP (2016) Fabrication and characterization of in situ graphene oxide reinforced high-performance shape memory polymeric nanocomposites from vegetable oil. RSC Adv 33:27648–27658

    Article  Google Scholar 

  41. Kashif M, Chang YW (2015) Supramolecular hydrogen-bonded polyolefin elastomer/modified graphene nanocomposites with near infrared responsive shape memory and healing properties. Eur Polymer J 66:273–281

    Article  CAS  Google Scholar 

  42. Taherzadeh M, Baghani M, Baniassadi M, Abrinia K, Safdari M (2016) Modeling and homogenization of shape memory polymer nanocomposites. Compos B Eng 91:36–43

    Article  CAS  Google Scholar 

  43. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49:79–120

    Article  Google Scholar 

  44. Williams T, Meador M, Miller S, Scheiman D (2011) Effect of graphene addition on shape memory behavior of epoxy resins. NASA technical reports

    Google Scholar 

  45. Park JH, Dao TD, Lee HI, Jeong HM, Kim BK (2014) Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials 7(3):1520–1538

    Article  CAS  Google Scholar 

  46. Yoonessi M, Shi Y, Scheiman DA, Lebron-Colon M, Tigelaar DM, Weiss RA, Meador MA (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6(9):7644–7655

    Article  CAS  Google Scholar 

  47. Zhao LM, Feng X, Li YF, Mi XJ (2014) Shape memory effect and mechanical properties of graphene/epoxy composites. Polym Sci Ser A 56(5):640–645

    Article  CAS  Google Scholar 

  48. Lee SH, Jung JH, Oh IK (2014) 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity. Small 10(19):3880–3886

    Article  CAS  Google Scholar 

  49. Qi X, Yao X, Deng S, Zhou T, Fu Q (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240–2249

    Article  CAS  Google Scholar 

  50. Lan X, Liu Y, Leng J (2009) Electrically conductive shape-memory polymer filled with Ni powder chains. Proc SPIE 7287:72871S

    Article  Google Scholar 

  51. Liu Y, Zhao J, Zhao L, Li W, Zhang H, Zhang Z (2016) High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl Mater Interfaces 8:311–320

    Article  CAS  Google Scholar 

  52. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69:2064–2068

    Article  CAS  Google Scholar 

  53. Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl Mater Interfaces 2(12):3506–3514

    Article  CAS  Google Scholar 

  54. Sahoo NG, Jung YC, Cho JW (2007) Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manuf Processes 22(4):419–423

    Article  CAS  Google Scholar 

  55. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos Sci Technol 67(9):1920–1929

    Article  CAS  Google Scholar 

  56. Mohan R, Ryu SH, Shanmugharaj AM (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur Polymer J 49(11):3492–3500

    Article  Google Scholar 

  57. Lu H, Liu Y, Gou J, Leng J, Du S (2010) Electroactive shape-memory polymer nanocomposites incorporating carbon nanofiber paper. Int J Smart Nano Mat 1(1):2–12

    Article  CAS  Google Scholar 

  58. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26(5):412–416

    Article  CAS  Google Scholar 

  59. Kausar A (2015) Effect of nanofiller dispersion on morphology, mechanical and conducting properties of electroactive shape memory Poly(urethane-urea)/functional nanodiamond composite. Adv Mat Sci 15(4):46

    Google Scholar 

  60. Lu H, Gou J (2012) Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci Nanotechnol Lett 4(12):1155–1159

    Article  CAS  Google Scholar 

  61. Liu X, Li H, Zeng Q, Zhang Y, Kang H, Duan H, Guo Y, Liu H (2015) Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. J Mater Chem A 3:11641–11649

    Article  CAS  Google Scholar 

  62. Luo X, Mather PT (2010) Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6:2146–2149

    Article  CAS  Google Scholar 

  63. Liang F, Sivilli R, Gou J, Xu Y, Mabbott B (2013) Electrical actuation and shape recovery control of shape-memory polymer nanocomposites. Int J Smart Nano Mat 4(3):167–178

    Google Scholar 

  64. Wang W, Liu D, Liu Y, Leng J, Bhattacharyya D (2015) Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos Sci Technol 106:20–24

    Article  CAS  Google Scholar 

  65. Dorigato A, Giusti G, Bondioli F, Pegoretti A (2013) Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles. eXPRESS Polym Lett 7(8):673–682

    Article  CAS  Google Scholar 

  66. Alam J, Khan A, Alam M, Mohan R (2015) Electroactive shape memory property of a Cu-decorated CNT dispersed PLA/ESO nanocomposite. Materials 7:6391–6400

    Article  Google Scholar 

  67. Zhou G, Zhang H, Xu S, Gui X, Wei H, Leng J, Koratkar N, Zhong J (2016) Fast triggering of shape memory polymers using an embedded carbon nanotube sponge network. Sci Rep 6:24148

    Article  Google Scholar 

  68. Ponnamma D, Sadasivuni KK, Strankowski M, Moldenaers P, Thomas S, Grohens Y (2013) Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv 3(36):16068–16079

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This publication was made possible by NPRP grant 6-282-2-119 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepalekshmi Ponnamma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ponnamma, D., El-Gawady, Y.M.H., Rajan, M., Goutham, S., Venkateswara Rao, K., Al-Maadeed, M.AA. (2017). Shape Memory Behavior of Conducting Polymer Nanocomposites. In: Ponnamma, D., Sadasivuni, K., Cabibihan, JJ., Al-Maadeed, MA. (eds) Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-50424-7_12

Download citation

Publish with us

Policies and ethics