Advertisement

Parallelizing Constraint Solvers for Hard RCPSP Instances

  • Roberto Amadini
  • Maurizio Gabbrielli
  • Jacopo MauroEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10079)

Abstract

The Resource-Constrained Project Scheduling Problem (RCPSP) is a well-known scheduling problem aimed at minimizing the makespan of a project subject to temporal and resource constraints. In this paper we show that hard RCPSPs can be efficiently tackled by a portfolio approach that combines the strengths of different constraint solvers Our approach seeks to predict and run in parallel the best solvers for a new, unseen RCPSP instance by enabling the bound communication between them. This on-average allows to outperform the oracle solver that always chooses the best available solver for any given instance.

Keywords

Constraint Programming Constraint Solver Portfolio Approach Bound Communication Synchronization Issue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amadini, R., Gabbrielli, M., Mauro, J.: Portfolio approaches for constraint optimization problems. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 21–35. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-09584-4_3 Google Scholar
  2. 2.
    Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a Lazy portfolio approach for constraint solving. TPLP 4–5, 509–524 (2014)zbMATHGoogle Scholar
  3. 3.
    Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving. In: IJCAI, pp. 232–238 (2015)Google Scholar
  4. 4.
    Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY-CP: a sequential CP portfolio solver. In: SAC, pp. 1861–1867 (2015)Google Scholar
  5. 5.
    Amadini, R., Gabbrielli, M., Mauro, J.: Why CP portfolio solvers are (under)utilized? Issues and challenges. In: Falaschi, M. (ed.) LOPSTR 2015. LNCS, vol. 9527, pp. 349–364. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27436-2_21 CrossRefGoogle Scholar
  6. 6.
    Amadini, R., Stuckey, P.J.: Sequential time splitting and bounds communication for a portfolio of optimization solvers. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 108–124. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10428-7_11 Google Scholar
  7. 7.
    Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Statist. Surv. 4, 40–79 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Christopher Beck, J., Davenport, A.J., Sitarski, E.M., Fox, M.S.: Texture-based heuristics for scheduling revisited. In: AAAI, pp. 241–248 (1997)Google Scholar
  9. 9.
    Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constraints: classification and complexity. Discret. Appl. Math. 5(1), 11–24 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brucker, P., Drexl, A., Mohring, R.H., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 1, 3–41 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 1–2, 43–62 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 1, 1–14 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project scheduling: a survey of recent developments. Comput. OR 4, 279–302 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 1, 23–37 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with calendars. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 262–278. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23219-5_19 Google Scholar
  16. 16.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: CP, pp. 529–543 (2007)Google Scholar
  17. 17.
    Ohrimenko, O., Stuckey, P.J., Michael, C.: Propagation via lazy clause generation. Constraints 3, 357–391 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming (2006)Google Scholar
  19. 19.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 3, 250–282 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy clause generation. J. Sched. 3, 273–289 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Roberto Amadini
    • 1
  • Maurizio Gabbrielli
    • 2
  • Jacopo Mauro
    • 3
    Email author
  1. 1.Department of Computing and Information SystemsUniversity of MelbourneMelbourneAustralia
  2. 2.DISI, University of Bologna, Italy/FOCUS Research Team, INRIARocquencourtFrance
  3. 3.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations