Skip to main content

Cardiac Congenital Disease and 3D-Echocardiography

  • Chapter
  • First Online:
Manual of 3D Echocardiography
  • 1082 Accesses

Abstract

Three-dimensional (3D) echocardiography (3DE) has been used in pediatric and adult patients with congenital heart disease (CHD) for over 20 years. Early 3DE was limited by long acquisition and post-processing times. It was not until the advent of real time 3D echocardiography (RT3DE) using matrix array probes that the technology became feasible as a clinical tool.

CHD encompasses a broad spectrum of lesions, ranging from simple septal defects and minor valve abnormalities to complex lesions involving abnormal atrio-ventricular and ventriculo-arterial connections, and significant alterations in the spatial orientation of the heart structures. Patients with CHD often require intricate surgeries and interventional procedures to correct or palliate their lesions. 3D echocardiography can improve the understanding of CHD, aid in the surgical planning for these patients, and provide additive information in their pre- and post-operative follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates JR, Tantengco MV, Ryan T, Feigenbaum H, Ensing GJ. A systematic approach to echocardiographic image acquisition and three-dimensional reconstruction with a subxiphoid rotational scan. J Am Soc Echocardiogr. 1996;9:257–65.

    Article  CAS  PubMed  Google Scholar 

  2. Ludomirsky A, Vermilion R, Nesser J, et al. Transthoracic real-time three-dimensional echocardiography using the rotational scanning approach for data acquisition. Echocardiography. 1994;11:599–606.

    Article  CAS  PubMed  Google Scholar 

  3. Salustri A, Spitaels S, McGhie J, Vletter W, Roelandt JR. Transthoracic three-dimensional echocardiography in adult patients with congenital heart disease. J Am Coll Cardiol. 1995;26:759–67.

    Article  CAS  PubMed  Google Scholar 

  4. Balestrini L, Fleishman C, Lanzoni L, et al. Real-time 3-dimensional echocardiography evaluation of congenital heart disease. J Am Soc Echocardiogr. 2000;13:171–6.

    Article  CAS  PubMed  Google Scholar 

  5. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.

    Article  PubMed  Google Scholar 

  6. Simpson J, Miller O, Bell A, Bellsham-Revell H, McGhie J, Meijboom F. Image orientation for three-dimensional echocardiography of congenital heart disease. Int J Cardiovasc Imaging. 2012;28:743–53.

    Article  PubMed  Google Scholar 

  7. Seliem MA, Fedec A, Cohen MS, et al. Real-time 3-dimensional echocardiographic imaging of congenital heart disease using matrix-array technology: freehand real-time scanning adds instant morphologic details not well delineated by conventional 2-dimensional imaging. J Am Soc Echocardiogr. 2006;19:121–9.

    Article  PubMed  Google Scholar 

  8. Chen GZ, Huang GY, Tao ZY, Liu XQ, Lin QS. Value of real-time 3-dimensional echocardiography sectional diagnosis in complex congenital heart disease evaluated by receiver operating characteristic analysis. J Am Soc Echocardiogr. 2008;21:458–63.

    Article  PubMed  Google Scholar 

  9. Bharucha T, Roman KS, Anderson RH, Vettukattil JJ. Impact of multiplanar review of three-dimensional echocardiographic data on management of congenital heart disease. Ann Thorac Surg. 2008;86:875–81.

    Article  PubMed  Google Scholar 

  10. Del Pasqua A, Sanders SP, de Zorzi A, et al. Impact of three-dimensional echocardiography in complex congenital heart defect cases: the surgical view. Pediatr Cardiol. 2009;30:293–300.

    Article  PubMed  Google Scholar 

  11. Farooqi KM, Uppu SC, Nguyen K, et al. Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol. 2016;37:90–8.

    Article  PubMed  Google Scholar 

  12. Pushparajah K, Barlow A, Tran VH, et al. A systematic three-dimensional echocardiographic approach to assist surgical planning in double outlet right ventricle. Echocardiography. 2013;30:234–8.

    Article  PubMed  Google Scholar 

  13. Kutty S, Colen TM, Smallhorn JF. Three-dimensional echocardiography in the assessment of congenital mitral valve disease. J Am Soc Echocardiogr. 2014;27:142–54.

    Article  PubMed  Google Scholar 

  14. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–e360.

    Article  PubMed  Google Scholar 

  15. Salgo IS, Gorman 3rd JH, Gorman RC, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106:711–7.

    Article  PubMed  Google Scholar 

  16. Anwar AM, McGhie JS, Meijboom FJ, Ten Cate FJ. Double orifice mitral valve by real-time three-dimensional echocardiography. Eur J Echocardiogr. 2008;9:731–2.

    Article  PubMed  Google Scholar 

  17. Pizzino F, Piccione MC, Trio O, Zito C, Monaco M, Carerj S. Isolated double orifice mitral valve in a young asymptomatic woman. J Cardiovasc Med. 2015.

    Google Scholar 

  18. Espinola-Zavaleta N, Vargas-Barron J, Keirns C, et al. Three-dimensional echocardiography in congenital malformations of the mitral valve. J Am Soc Echocardiogr. 2002;15:468–72.

    Article  PubMed  Google Scholar 

  19. Valverde I, Rawlins D, Austin C, Simpson JM. Three-dimensional echocardiography in the management of parachute mitral valve. Eur Heart J Cardiovasc Imaging. 2012;13:446.

    Article  PubMed  Google Scholar 

  20. Sew D, Kostolny M, Carr M, Cook AC, Marek J. Complex left atrial cor triatriatum associated with supravalvar mitral membrane, coronary sinus defect and persistent left superior caval vein. 3D echocardiography navigates surgeon to successful repair. Int J Cardiol. 2014;173:e58–62.

    Article  CAS  PubMed  Google Scholar 

  21. Jone PN, Bremen C, DiMaria M, et al. Three-dimensional echocardiography enhances diagnostic accuracy of supramitral ring. Echocardiography. 2015;32:1048–50.

    Article  PubMed  Google Scholar 

  22. Takahashi K, Mackie AS, Rebeyka IM, et al. Two-dimensional versus transthoracic real-time three-dimensional echocardiography in the evaluation of the mechanisms and sites of atrioventricular valve regurgitation in a congenital heart disease population. J Am Soc Echocardiogr. 2010;23:726–34.

    Article  PubMed  Google Scholar 

  23. Little SH, Pirat B, Kumar R, et al. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging. 2008;1:695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging. 2009;2:1245–52.

    Article  PubMed  Google Scholar 

  25. Zeng X, Levine RA, Hua L, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging. 2011;4:506–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Takahashi K, Mackie AS, Thompson R, et al. Quantitative real-time three-dimensional echocardiography provides new insight into the mechanisms of mitral valve regurgitation post-repair of atrioventricular septal defect. J Am Soc Echocardiogr. 2012;25:1231–44.

    Article  PubMed  Google Scholar 

  27. Takahashi K, Guerra V, Roman KS, Nii M, Redington A, Smallhorn JF. Three-dimensional echocardiography improves the understanding of the mechanisms and site of left atrioventricular valve regurgitation in atrioventricular septal defect. J Am Soc Echocardiogr. 2006;19:1502–10.

    Article  PubMed  Google Scholar 

  28. Bharucha T, Sivaprakasam MC, Haw MP, Anderson RH, Vettukattil JJ. The angle of the components of the common atrioventricular valve predicts the outcome of surgical correction in patients with atrioventricular septal defect and common atrioventricular junction. J Am Soc Echocardiogr. 2008;21:1099–104.

    Article  PubMed  Google Scholar 

  29. Hlavacek AM, Crawford Jr FA, Chessa KS, Shirali GS. Real-time three-dimensional echocardiography is useful in the evaluation of patients with atrioventricular septal defects. Echocardiography. 2006;23:225–31.

    Article  PubMed  Google Scholar 

  30. Barrea C, Levasseur S, Roman K, et al. Three-dimensional echocardiography improves the understanding of left atrioventricular valve morphology and function in atrioventricular septal defects undergoing patch augmentation. J Thorac Cardiovasc Surg. 2005;129:746–53.

    Article  PubMed  Google Scholar 

  31. Colen TM, Khoo NS, Ross DB, Smallhorn JF. Partial zone of apposition closure in atrioventricular septal defect: are papillary muscles the clue. Ann Thorac Surg. 2013;96:637–43.

    Article  PubMed  Google Scholar 

  32. Patel V, Nanda NC, Rajdev S, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of Ebstein's anomaly. Echocardiography. 2005;22:847–54.

    Article  PubMed  Google Scholar 

  33. Vettukattil JJ, Bharucha T, Anderson RH. Defining Ebstein's malformation using three-dimensional echocardiography. Interact Cardiovasc Thorac Surg. 2007;6:685–90.

    Article  PubMed  Google Scholar 

  34. Bharucha T, Anderson RH, Lim ZS, Vettukattil JJ. Multiplanar review of three-dimensional echocardiography gives new insights into the morphology of Ebstein's malformation. Cardiol Young. 2010;20:49–53.

    Article  PubMed  Google Scholar 

  35. Kutty S, Colen T, Thompson RB, et al. Tricuspid regurgitation in hypoplastic left heart syndrome: mechanistic insights from 3-dimensional echocardiography and relationship with outcomes. Circ Cardiovasc Imaging. 2014;7:765–72.

    Article  PubMed  Google Scholar 

  36. Velayudhan DE, Brown TM, Nanda NC, et al. Quantification of tricuspid regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography. 2006;23:793–800.

    Article  PubMed  Google Scholar 

  37. Silvestry FE, Cohen MS, Armsby LB, et al. Guidelines for the echocardiographic assessment of atrial septal defect and patent foramen ovale: from the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. J Am Soc Echocardiogr. 2015;28:910–58.

    Article  PubMed  Google Scholar 

  38. Pushparajah K, Miller OI, Simpson JM. 3D echocardiography of the atrial septum: anatomical features and landmarks for the echocardiographer. JACC Cardiovasc Imaging. 2010;3:981–4.

    Article  PubMed  Google Scholar 

  39. Roberson DA, Cui W, Patel D, et al. Three-dimensional transesophageal echocardiography of atrial septal defect: a qualitative and quantitative anatomic study. J Am Soc Echocardiogr. 2011;24:600–10.

    Article  PubMed  Google Scholar 

  40. Mehmood F, Vengala S, Nanda NC, et al. Usefulness of live three-dimensional transthoracic echocardiography in the characterization of atrial septal defects in adults. Echocardiography. 2004;21:707–13.

    Article  PubMed  Google Scholar 

  41. Acar P, Dulac Y, Aggoun Y. Images in congenital heart disease. Atrial septal defect within the oval fossa with enlarged coronary sinus: three-dimensional echocardiography. Cardiol Young. 2002;12:560.

    Article  PubMed  Google Scholar 

  42. van den Bosch AE, Ten Harkel DJ, McGhie JS, et al. Characterization of atrial septal defect assessed by real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2006;19:815–21.

    Article  PubMed  Google Scholar 

  43. Taniguchi M, Akagi T, Watanabe N, et al. Application of real-time three-dimensional transesophageal echocardiography using a matrix array probe for transcatheter closure of atrial septal defect. J Am Soc Echocardiogr. 2009;22:1114–20.

    Article  PubMed  Google Scholar 

  44. Seo JS, Song JM, Kim YH, et al. Effect of atrial septal defect shape evaluated using three-dimensional transesophageal echocardiography on size measurements for percutaneous closure. J Am Soc Echocardiogr. 2012;25:1031–40.

    Article  PubMed  Google Scholar 

  45. Taniguchi M, Akagi T, Kijima Y, Sano S. Clinical advantage of real-time three-dimensional transesophageal echocardiography for transcatheter closure of multiple atrial septal defects. Int J Cardiovasc Imaging. 2013;29:1273–80.

    Article  PubMed  Google Scholar 

  46. Lodato JA, Cao QL, Weinert L, et al. Feasibility of real-time three-dimensional transoesophageal echocardiography for guidance of percutaneous atrial septal defect closure. Eur J Echocardiogr. 2009;10:543–8.

    Article  PubMed  Google Scholar 

  47. Hascoet S, Hadeed K, Marchal P, et al. The relation between atrial septal defect shape, diameter, and area using three-dimensional transoesophageal echocardiography and balloon sizing during percutaneous closure in children. Eur Heart J Cardiovasc Imaging. 2015;16:747–55.

    Article  PubMed  Google Scholar 

  48. Charakida M, Pushparajah K, Anderson D, Simpson JM. Insights gained from three-dimensional imaging modalities for closure of ventricular septal defects. Circ Cardiovasc Imaging. 2014;7:954–61.

    Article  PubMed  Google Scholar 

  49. Chen FL, Hsiung MC, Nanda N, Hsieh KS, Chou MC. Real time three-dimensional echocardiography in assessing ventricular septal defects: an echocardiographic-surgical correlative study. Echocardiography. 2006;23:562–8.

    Article  PubMed  Google Scholar 

  50. Cheng TO, Xie MX, Wang XF, Wang Y, Lu Q. Real-time 3-dimensional echocardiography in assessing atrial and ventricular septal defects: an echocardiographic-surgical correlative study. Am Heart J. 2004;148:1091–5.

    Article  PubMed  Google Scholar 

  51. Mercer-Rosa L, Seliem MA, Fedec A, Rome J, Rychik J, Gaynor JW. Illustration of the additional value of real-time 3-dimensional echocardiography to conventional transthoracic and transesophageal 2-dimensional echocardiography in imaging muscular ventricular septal defects: does this have any impact on individual patient treatment? J Am Soc Echocardiogr. 2006;19:1511–9.

    Article  PubMed  Google Scholar 

  52. Mehmood F, Miller AP, Nanda NC, et al. Usefulness of live/real time three-dimensional transthoracic echocardiography in the characterization of ventricular septal defects in adults. Echocardiography. 2006;23:421–7.

    Article  PubMed  Google Scholar 

  53. Charakida M, Qureshi S, Simpson JM. 3D echocardiography for planning and guidance of interventional closure of VSD. JACC Cardiovasc Imaging. 2013;6:120–3.

    Article  PubMed  Google Scholar 

  54. Capoulade R, Pibarot P. Assessment of aortic valve disease: role of imaging modalities. Curr Treat Options Cardiovasc Med. 2015;17:49.

    Article  PubMed  Google Scholar 

  55. Hahn RT. Guidance of transcatheter aortic valve replacement by echocardiography. Curr Cardiol Rep. 2014;16:442.

    Article  PubMed  Google Scholar 

  56. Hadeed K, Hascoet S, Amadieu R, et al. 3D transthoracic echocardiography to assess pulmonary valve morphology and annulus size in patients with Tetralogy of Fallot. Arch Cardiovasc Dis. 2016;109:87–95.

    Article  PubMed  Google Scholar 

  57. Villafane J, Feinstein JA, Jenkins KJ, et al. Hot topics in tetralogy of Fallot. J Am Coll Cardiol. 2013;62:2155–66.

    Article  PubMed  Google Scholar 

  58. Valente AM, Cook S, Festa P, et al. Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the AmericanSsociety of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr. 2014;27:111–41.

    Article  PubMed  Google Scholar 

  59. Khoo NS, Young A, Occleshaw C, Cowan B, Zeng IS, Gentles TL. Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2009;22:1279–88.

    Article  PubMed  Google Scholar 

  60. Grewal J, Majdalany D, Syed I, Pellikka P, Warnes CA. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2010;23:127–33.

    Article  PubMed  Google Scholar 

  61. Dragulescu A, Grosse-Wortmann L, Fackoury C, Mertens L. Echocardiographic assessment of right ventricular volumes: a comparison of different techniques in children after surgical repair of tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2012;13:596–604.

    Article  PubMed  Google Scholar 

  62. Dragulescu A, Grosse-Wortmann L, Fackoury C, et al. Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of Fallot: clinical validation of a new echocardiographic method. J Am Soc Echocardiogr. 2011;24:1191–8.

    Article  PubMed  Google Scholar 

  63. Colen T, Smallhorn JF. Three-dimensional echocardiography for the assessment of atrioventricular valves in congenital heart disease: past, present and future. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2015;18:62–71.

    Article  PubMed  Google Scholar 

  64. Cikes M, Tong L, Sutherland GR, D'Hooge J. Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits. JACC Cardiovasc Imaging. 2014;7:812–23.

    Article  PubMed  Google Scholar 

  65. Samuel BP, Pinto C, Pietila T, Vettukattil JJ. Ultrasound-derived three-dimensional printing in congenital heart disease. J Digit Imaging. 2015;28:459–61.

    Article  PubMed  Google Scholar 

  66. Xue H, Sun K, Yu J, et al. Three-dimensional echocardiographic virtual endoscopy for the diagnosis of congenital heart disease in children. Int J Cardiovasc Imaging. 2010;26:851–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kurup HK, Samuel BP, Vettukattil JJ. Hybrid 3D printing: a game-changer in personalized cardiac medicine? Expert Rev Cardiovasc Ther. 2015;13:1281–4.

    Article  CAS  PubMed  Google Scholar 

  68. Suematsu Y, Martinez JF, Wolf BK, et al. Three-dimensional echo-guided beating heart surgery without cardiopulmonary bypass: atrial septal defect closure in a swine model. J Thorac Cardiovasc Surg. 2005;130:1348–57.

    Article  PubMed  Google Scholar 

  69. Vasilyev NV, Martinez JF, Freudenthal FP, Suematsu Y, Marx GR, del Nido PJ. Three-dimensional echo and videocardioscopy-guided atrial septal defect closure. Ann Thorac Surg. 2006;82:1322–6. discussion 1326

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Mertens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grattan, M., Mertens, L. (2017). Cardiac Congenital Disease and 3D-Echocardiography. In: Casas Rojo, E., Fernandez-Golfin, C., Zamorano, J. (eds) Manual of 3D Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-50335-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50335-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50333-2

  • Online ISBN: 978-3-319-50335-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics