Skip to main content

Physical and Technical Aspects and Overview of 3D- Echocardiography

  • Chapter
  • First Online:
Book cover Manual of 3D Echocardiography

Abstract

The advent of three-dimensional echocardiography (3DE) represented a real breakthrough in cardiovascular ultrasound. Major advancements in computer and transducer technology allow to acquire 3D data sets with adequate spatial and temporal resolution for assessing the functional anatomy of cardiac structures in most of cardiac pathologies. Compared to conventional two-dimensional echocardiographic (2DE) imaging, 3DE allows the operator to visualize the cardiac structures from virtually any perspective, providing a more anatomically sound and intuitive display, as well as an accurate quantitative evaluation of anatomy and function of heart valves. In addition, 3DE overcomes geometric assumptions and enables an accurate quantitative and reproducible evaluation of cardiac chambers, thus offering solid elements for patient management. Furthermore, 3DE is the only imaging technique based on volumetric scanning able to show moving structures in the beating heart, in contrast to cardiac magnetic resonance (CMR) or cardiac computed tomography (CT), which are based on post-acquisition 3D reconstruction from multiple tomographic images and displaying only 3D rendered snapshots.

Data regarding clinical applications of 3DE are burgeoning and gradually capturing an established place in the noninvasive clinical assessment of anatomy and function of cardiac structures. Recently, joint European Association of Echocardiography and American Society of Echocardiography recommendations have been published, aiming to provide clinicians with a systematic approach to 3D image acquisition and analysis. Finally, the recent update of the recommendations for the chamber quantification using echocardiography recommended 3DE for the assessment of the left (LV) and right ventricular (RV) size and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Surkova E, Muraru D, Aruta P, et al. Current clinical applications of three-dimensional echocardiography: When the technique makes the difference. Curr Cardiol Rep. 2016;18:19.

    Article  Google Scholar 

  2. Surkova E, Muraru D, Iliceto S, Badano LP. The use of multimodality cardiovascular imaging to assess right ventricular size and function. Int J Cardiol. 2016;214:54–69.

    Article  PubMed  Google Scholar 

  3. Badano LP, Miglioranza MH, Mihaila S, et al. Left Atrial Volumes and Function by Three-Dimensional Echocardiography: Reference Values, Accuracy, Reproducibility, and Comparison With Two-Dimensional Echocardiographic Measurements. Circ Cardiovasc Imaging. 2016;9:pii: e004229.

    Article  Google Scholar 

  4. Badano LP. The clinical benefits of adding a third dimension to assess the left ventricle with echocardiography. Scientifica. 2014;2014:1–18.

    Article  Google Scholar 

  5. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13:1–46.

    Article  PubMed  Google Scholar 

  6. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.

    Article  PubMed  Google Scholar 

  7. Dekker DL, Piziali RL, Dong Jr E. A system for ultrasonically imaging the human heart in three dimensions. Comput Biomed Res. 1974;7:544–53.

    Article  CAS  PubMed  Google Scholar 

  8. Moritz WE, Shreve PL. A microprocessor based spatial locating system for use with diagnostic ultrasound. IEEE Trans Biomed Eng. 1976;64:966–74.

    Google Scholar 

  9. Raab FH, Blood EB, Steiner TO. al. e. Magnetic position and orientation tracking system. IEEE Trans Aerospace Elec Sys. 1979;15:709–18.

    Article  Google Scholar 

  10. Geiser EA, Lupkiewicz SM, Christie LG, Ariet M, Conetta DA, Conti CR. A framework for three-dimensional time-varying reconstruction of the human left ventricle: sources of error and estimation of their magnitude. Computers and biomedical research, an international journal. 1980;13:225–41.

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh A, Nanda NC, Maurer G. Three-dimensional reconstruction of echo-cardiographic images using the rotation method. Ultrasound Med Biol. 1982;8:655–61.

    Article  CAS  PubMed  Google Scholar 

  12. Matsumoto M, Matsuo H, Kitabatake A, et al. Three-dimensional echocardiograms and two-dimensional echocardiographic images at desired planes by a computerized system. Ultrasound Med Biol. 1977;3:163–78.

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto M, Inoue M, Tamura S, Tanaka K, Abe H. Three-dimensional echocardiography for spatial visualization and volume calculation of cardiac structures. J Clin Ultrasound. 1981;9:157–65.

    Article  CAS  PubMed  Google Scholar 

  14. Nanda N, Pinheiro L, Sanyal R, et al. Multiplane transesophagal echocardiographic imaging and three-dimensional reconstruction. Echocardiography. 1992;9:687–94.

    Google Scholar 

  15. Pandian NG, Nanda NC, Schwartz SL, et al. Three-dimensional and four-dimensional transesophageal echocardiographic imaging of the heart and aorta in humans using a computed tomographic imaging probe. Echocardiography. 1992;9:677–87.

    Article  CAS  PubMed  Google Scholar 

  16. Flachskampf FA, Franke A, Job FP, et al. Three-dimensional reconstruction of cardiac structures from transesophageal echocardiography. Am J Card Imaging. 1995;9:141–7.

    CAS  PubMed  Google Scholar 

  17. Vogel M, Losch S. Dynamic three-dimensional echocardiography with a computed tomography imaging probe: initial clinical experience with transthoracic application in infants and children with congenital heart defects. Br Heart J. 1994;71:462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ludomirsky A, Vermilion R, Nesser J, et al. Transthoracic real-time three-dimensional echocardiography using the rotational scanning approach for data acquisition. Echocardiography. 1994;11:599–606.

    Article  CAS  PubMed  Google Scholar 

  19. Kupferwasser I, Mohr-Kahaly S, Stahr P, et al. Transthoracic three-dimensional echocardiographic volumetry of distorted left ventricles using rotational scanning. J Am Soc Echocardiogr. 1997;10:840–52.

    Article  CAS  PubMed  Google Scholar 

  20. Sheikh K, Smith SW, von Ramm O, Kisslo J. Real-time, three-dimensional echocardiography: feasibility and initial use. Echocardiography. 1991;8:119–25.

    Article  CAS  PubMed  Google Scholar 

  21. von Ramm OT, Smith SW. Real time volumetric ultrasound imaging system. Journal of digital imaging: the official journal of the Society for Computer Applications in Radiology. 1990;3:261–6.

    Google Scholar 

  22. Muraru D, Spadotto V, Cecchetto A, et al. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging. 2016;17:1279–89.

    Google Scholar 

  23. Muraru D, Badano LP, Peluso D, et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. JAmSocEchocardiogr. 2013;26:618–28.

    Google Scholar 

  24. Maffessanti F, Muraru D, Esposito R, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6:700–10.

    Article  PubMed  Google Scholar 

  25. Peluso D, Badano LP, Muraru D, et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc Imaging. 2013.

    Google Scholar 

  26. Muraru D, Cattarina M, Boccalini F, et al. Mitral valve anatomy and function: new insights from three-dimensional echocardiography. J Cardiovasc Med (Hagerstown). 2013;14:91–9.

    Article  Google Scholar 

  27. Muraru D, Badano LP, Sarais C, Solda E, Iliceto S. Evaluation of tricuspid valve morphology and function by transthoracic three-dimensional echocardiography. Curr Cardiol Rep. 2011;13:242–9.

    Article  PubMed  Google Scholar 

  28. Muraru D, Badano LP, Vannan M, Iliceto S. Assessment of aortic valve complex by three-dimensional echocardiography: a framework for its effective application in clinical practice. Eur Heart J Cardiovasc Imaging. 2012;13:541–55.

    Article  PubMed  Google Scholar 

  29. Zamorano JL, Badano LP, Bruce C, et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur Heart J. 2011;32:2189–214.

    Article  PubMed  Google Scholar 

  30. Badano LP, Muraru D, Rigo F, et al. High volume-rate three-dimensional stress echocardiography to assess inducible myocardial ischemia: a feasibility study. J Am Soc Echocardiogr. 2010;23:628–35.

    Article  PubMed  Google Scholar 

  31. Zamorano J, Cordeiro P, Sugeng L, et al. Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol. 2004;43:2091–6.

    Article  PubMed  Google Scholar 

  32. Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr. 2015;28:398–403.

    Article  PubMed  Google Scholar 

  33. Rigolli M, Anandabaskaran S, Christiansen JP, Whalley GA. Bias associated with left ventricular quantification by multimodality imaging: a systematic review and meta-analysis. Open Heart. 2016;3:e000388.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Badano LP, Boccalini F, Muraru D, et al. Current clinical applications of transthoracic three-dimensional echocardiography. J Cardiovasc Ultrasound. 2012;20:1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shimada YJ, Shiota T. A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol. 2011;107:126–38.

    Article  PubMed  Google Scholar 

  36. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;59:1799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aune E, Baekkevar M, Rodevand O, Otterstad JE. Reference values for left ventricular volumes with real-time 3-dimensional echocardiography. Scand Cardiovasc J. 2010;44:24–30.

    Article  PubMed  Google Scholar 

  38. Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R. Population-based reference values for 3D echocardiographic LV volumes and ejection fraction. JACC Cardiovasc Imaging. 2012;5:1191–7.

    Article  PubMed  Google Scholar 

  39. Leibundgut G, Rohner A, Grize L, et al. Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr. 2010;23:116–26.

    Article  PubMed  Google Scholar 

  40. Gopal AS, Chukwu EO, Iwuchukwu CJ, et al. Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2007;20:445–55.

    Article  PubMed  Google Scholar 

  41. Lu X, Nadvoretskiy V, Bu L, et al. Accuracy and reproducibility of real-time three-dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children. J Am Soc Echocardiogr. 2008;21:84–9.

    Article  PubMed  Google Scholar 

  42. Zhang QB, Sun JP, Gao RF, et al. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging. Int J Cardiol. 2013;168:3991–5.

    Article  PubMed  Google Scholar 

  43. Pickett CA, Cheezum MK, Kassop D, Villines TC, Hulten EA. Accuracy of cardiac CT, radionucleotide and invasive ventriculography, two- and three-dimensional echocardiography, and SPECT for left and right ventricular ejection fraction compared with cardiac MRI: a meta-analysis. Eur Heart J Cardiovasc Imaging. 2015;16:848–52.

    Article  PubMed  Google Scholar 

  44. Chandra S, Salgo IS, Sugeng L, et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging. 2011;4:24–32.

    Article  PubMed  Google Scholar 

  45. Buck T, Plicht B. Real-Time Three-Dimensional Echocardiographic Assessment of Severity of Mitral Regurgitation Using Proximal Isovelocity Surface Area and Vena Contracta Area Method. Lessons We Learned and Clinical Implications. Curr Cardiovasc Imaging Rep. 2015;8:38.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chandra S, Salgo IS, Sugeng L, et al. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol. 2011;301:H1015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shanks M, Siebelink HM, Delgado V, et al. Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging. 2010;3:694–700.

    Article  PubMed  Google Scholar 

  48. Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging. 2009;2:1245–52.

    Article  PubMed  Google Scholar 

  49. Thavendiranathan P, Liu S, Datta S, et al. Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging. 2013;6:125–33.

    Article  PubMed  Google Scholar 

  50. Zeng X, Levine RA, Hua L, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging. 2011;4:506–13.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tamborini G, Muratori M, Maltagliati A, et al. Pre-operative transthoracic real-time three-dimensional echocardiography in patients undergoing mitral valve repair: accuracy in cases with simple vs. complex prolapse lesions. Eur J Echocardiogr. 2010;11:778–85.

    Article  PubMed  Google Scholar 

  52. de Groot-de Laat LE, Ren B, McGhie J, et al. The role of experience in echocardiographic identification of location and extent of mitral valve prolapse with 2D and 3D echocardiography. Int J Cardiovasc Imaging. 2016;32:1171–7.

    Article  PubMed  Google Scholar 

  53. Izumo M, Shiota M, Kar S, et al. Comparison of real-time three-dimensional transesophageal echocardiography to two-dimensional transesophageal echocardiography for quantification of mitral valve prolapse in patients with severe mitral regurgitation. Am J Cardiol. 2013;111:588–94.

    Article  PubMed  Google Scholar 

  54. Zamorano J, Perez de Isla L, Sugeng L, et al. Non-invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography. Eur Heart J. 2004;25:2086–91.

    Article  PubMed  Google Scholar 

  55. Anwar AM, Attia WM, Nosir YF, et al. Validation of a new score for the assessment of mitral stenosis using real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2010;23:13–22.

    Article  PubMed  Google Scholar 

  56. Soliman OI, Anwar AM, Metawei AK, McGhie JS, Geleijnse ML, Ten Cate FJ. New Scores for the Assessment of Mitral Stenosis Using Real-Time Three-Dimensional Echocardiography. Curr Cardiovasc Imaging Rep. 2011;4:370–7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Addetia K, Yamat M, Mediratta A, et al. Comprehensive Two-Dimensional Interrogation of the Tricuspid Valve Using Knowledge Derived from Three-Dimensional Echocardiography. J Am Soc Echocardiogr. 2016;29:74–82.

    Article  PubMed  Google Scholar 

  58. Stankovic I, Daraban AM, Jasaityte R, Neskovic AN, Claus P, Voigt JU. Incremental value of the en face view of the tricuspid valve by two-dimensional and three-dimensional echocardiography for accurate identification of tricuspid valve leaflets. J Am Soc Echocardiogr. 2014;27:376–84.

    Article  PubMed  Google Scholar 

  59. Miglioranza MH, Mihaila S, Muraru D, Cucchini U, Iliceto S, Badano LP. Dynamic changes in tricuspid annular diameter measurement in relation to the echocardiographic view and timing during the cardiac cycle. J Am Soc Echocardiogr. 2015;28:226–35.

    Article  PubMed  Google Scholar 

  60. Miglioranza MH, Mihaila S, Muraru D, Cucchini U, Iliceto S, Badano LP. Variability of Tricuspid Annulus Diameter Measurement in Healthy Volunteers. JACC Cardiovasc Imaging. 2015;8:864–6.

    Article  PubMed  Google Scholar 

  61. Badano LP, Agricola E, Perez de Isla L, Gianfagna P, Zamorano JL. Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009;10:477–84.

    Article  PubMed  Google Scholar 

  62. Mediratta A, Addetia K, Yamat M, et al. 3D echocardiographic location of implantable device leads and mechanism of associated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014;7:337–47.

    Article  PubMed  Google Scholar 

  63. Fukuda S, Saracino G, Matsumura Y, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114:I492–8.

    Article  PubMed  Google Scholar 

  64. Nucifora G, Badano LP, Allocca G, et al. Severe tricuspid regurgitation due to entrapment of the anterior leaflet of the valve by a permanent pacemaker lead: role of real time three-dimensional echocardiography. Echocardiography. 2007;24:649–52.

    Article  PubMed  Google Scholar 

  65. Faletra F, La Marchesina U, Bragato R, De Chiara F. Three dimensional transthoracic echocardiography images of tricuspid stenosis. Heart. 2005;91:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Muraru D, Tuveri MF, Marra MP, Badano LP, Iliceto S. Carcinoid tricuspid valve disease: incremental value of three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13:329.

    Article  PubMed  Google Scholar 

  67. Chen TE, Kwon SH, Enriquez-Sarano M, Wong BF, Mankad SV. Three-dimensional color Doppler echocardiographic quantification of tricuspid regurgitation orifice area: comparison with conventional two-dimensional measures. J Am Soc Echocardiogr. 2013;26:1143–52.

    Article  PubMed  Google Scholar 

  68. Song JM, Jang MK, Choi YS, et al. The vena contracta in functional tricuspid regurgitation: a real-time three-dimensional color Doppler echocardiography study. J Am Soc Echocardiogr. 2011;24:663–70.

    Article  PubMed  Google Scholar 

  69. de Agustin JA, Viliani D, Vieira C, et al. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J Am Soc Echocardiogr. 2013;26:1063–72.

    Article  PubMed  Google Scholar 

  70. Zamorano J, Goncalves A, Lancellotti P, et al. The use of imaging in new transcatheter interventions: an EACVI review paper. Eur Heart J Cardiovasc Imaging. 2016;17:835–835af.

    Article  PubMed  Google Scholar 

  71. Hahn RT, Little SH, Monaghan MJ, et al. Recommendations for comprehensive intraprocedural echocardiographic imaging during TAVR. JACC Cardiovasc Imaging. 2015;8:261–87.

    Article  PubMed  Google Scholar 

  72. Jilaihawi H, Doctor N, Kashif M, et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol. 2013;61:908–16.

    Article  PubMed  Google Scholar 

  73. Khalique OK, Kodali SK, Paradis JM, et al. Aortic annular sizing using a novel 3-dimensional echocardiographic method: use and comparison with cardiac computed tomography. Circ Cardiovasc Imaging. 2014;7:155–63.

    Article  PubMed  Google Scholar 

  74. Lancellotti P, Pibarot P, Chambers J, et al. Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:589–90.

    Article  PubMed  Google Scholar 

  75. Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging. 2016;9:769–82.

    Article  PubMed  Google Scholar 

  76. Calleja A, Poulin F, Woo A, et al. Quantitative Modeling of the Mitral Valve by Three-Dimensional Transesophageal Echocardiography in Patients Undergoing Mitral Valve Repair: Correlation with Intraoperative Surgical Technique. J Am Soc Echocardiogr. 2015;28:1083–92.

    Article  PubMed  Google Scholar 

  77. Calleja A, Thavendiranathan P, Ionasec RI, et al. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ Cardiovasc Imaging. 2013;6:99–108.

    Article  PubMed  Google Scholar 

  78. Ozawa K, Funabashi N, Takaoka H, et al. Utility of three-dimensional global longitudinal strain of the right ventricle using transthoracic echocardiography for right ventricular systolic function in pulmonary hypertension. Int J Cardiol. 2014;174:426–30.

    Article  PubMed  Google Scholar 

  79. Smith BC, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 2014;64:41–51.

    Article  PubMed  Google Scholar 

  80. Addetia K, Maffessanti F, Yamat M, et al. Three-dimensional echocardiography-based analysis of right ventricular shape in pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging. 2016;17:564–75.

    Article  PubMed  Google Scholar 

  81. Bruckheimer E, Rotschild C, Dagan T, et al. Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging. 2016;17:845–9.

    Article  PubMed  Google Scholar 

  82. Beitnes JO, Klaeboe LG, Karlsen JS, Urheim S. Mitral valve analysis using a novel 3D holographic display: a feasibility study of 3D ultrasound data converted to a holographic screen. Int J Cardiovasc Imaging. 2015;31:323–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi P. Badano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Muraru, D., Badano, L.P. (2017). Physical and Technical Aspects and Overview of 3D- Echocardiography. In: Casas Rojo, E., Fernandez-Golfin, C., Zamorano, J. (eds) Manual of 3D Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-50335-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50335-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50333-2

  • Online ISBN: 978-3-319-50335-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics