Particle Swarm Optimization for Operating Theater Scheduling Considering Medical Devices Sterilization

  • Benoit BerouleEmail author
  • Olivier Grunder
  • Oussama Barakat
  • Olivier Aujoulat
  • Helene Lustig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10103)


The operating theater scheduling problem is one of the main hospital sector issues of today’s world. Indeed, numerous papers dealing with this subject may be found in the literature. However, the synchronization between the pharmacy (providing the surgical devices and medicines) and the operating theater is rarely studied. Nevertheless, the importance of the pharmacy keeps growing because of the creation of numerous hospital groups composed of several hospital complexes sharing a central pharmacy. In this paper, we focus on the sterilization cycle of the surgical devices to provide operating theater scheduling methods taking into account pharmacy issues. We present exact methods with a mixed integer linear programming model to determine optimal schedules as well as approximate solutions with a particle swarm optimization based method to solve the most complex cases. These modelings provide interesting schedules using few quantities of surgical devices boxes even when considering many procedures. With this study we hope to lay the foundations of a transverse logistics unifying the operating theater and the pharmacy in a multi-site context.


Optimization Health care Particle swarm optimization Operating theater scheduling 


  1. 1.
    Beroule, B., Grunder, O., Barakat, O., Aujoulat, O., Lustig, H.: Ordonnancement des interventions chirurgicales d’un hopital avec prise en compte de l’étape de stérilisation dans un contexte multi-sites (2016)Google Scholar
  2. 2.
    Cardoen, B., Demeulemeester, E., Beliën, J.: Optimizing a multiple objective surgical case sequencing problem. Int. J. Prod. Econ. 119(2), 354–366 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cardoen, B., Demeulemeester, E., Beliën, J.: Sequencing surgical cases in a day-care environment: an exact branch-and-price approach. Comput. Oper. Res. 36(9), 2660–2669 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Clerc, M., Siarry, P.: Une nouvelle métaheuristique pour l’optimisation difficile: la méthode des essaims particulaires. J3eA, 3:007 (2004)Google Scholar
  7. 7.
    Dexter, F., Blake, J.T., Penning, D.H., Sloan, B., Chung, P., Lubarsky, D.A.: Use of linear programming to estimate impact of changes in a hospital’s operating room time allocation on perioperative variable costs. Anesthesiology 96(3), 718–724 (2002)CrossRefGoogle Scholar
  8. 8.
    Dexter, F., Epstein, R.H.: Scheduling of cases in an ambulatory center. Anesthesiol. Clin. North Am. 21(2), 387–402 (2003)CrossRefGoogle Scholar
  9. 9.
    Dexter, F., Macario, A.: When to release allocated operating room time to increase operating room efficiency. Anesth. Analg. 98(3), 758–762 (2004)CrossRefGoogle Scholar
  10. 10.
    Dexter, F., Macario, A., Traub, R.D.: Which algorithm for scheduling add-on elective cases maximizes operating room utilization? Use of bin packing algorithms, fuzzy constraints in operating room management. Anesthesiology 91(5), 1491–1500 (1999)CrossRefGoogle Scholar
  11. 11.
    Fei, H., Meskens, N., Chu, C.: A planning and scheduling problem for an operating theatre using an open scheduling strategy. Comput. Ind. Eng. 58(2), 221–230 (2010)CrossRefGoogle Scholar
  12. 12.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guinet, A., Chaabane, S.: Operating theatre planning. Int. J. Prod. Econ. 85(1), 69–81 (2003)CrossRefGoogle Scholar
  14. 14.
    Hanset, A., Fei, H., Roux, O., Duvivier, D., Meskens, N.: Ordonnancement des interventions chirurgicales par une recherche tabou: Exécutions courtes vs longues. Logistique et Transport LT 2007 (2007)Google Scholar
  15. 15.
    Jebali, A., Alouane, A.B.H., Ladet, P.: Operating rooms scheduling. Int. J. Prod. Econ. 99(1), 52–62 (2006)CrossRefGoogle Scholar
  16. 16.
    Kenndy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  17. 17.
    Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, New York (2011)Google Scholar
  18. 18.
    Klement, N.: Planification et affectation de ressources dans les réseaux de soin: analogie avec le problème du bin packing, proposition de méthodes approchées. Ph.D. thesis, Université Blaise Pascal-Clermont-Ferrand II (2014)Google Scholar
  19. 19.
    Marcon, E., Dexter, F.: Impact of surgical sequencing on post anesthesia care unit staffing. Health Care Manage. Sci. 9(1), 87–98 (2006)CrossRefGoogle Scholar
  20. 20.
    Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal. Appl. 8(4), 332–344 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 2010 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 400–407. IEEE (2010)Google Scholar
  22. 22.
    Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Saadani, N.H., Guinet, A., Chaabane, S.: Ordonnancement des blocs operatoires. In: MOSIM: Conference francophone de MOdélisation et SIMulation, vol. 6 (2006)Google Scholar
  24. 24.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, pp. 69–73. IEEE (1998)Google Scholar
  25. 25.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). doi: 10.1007/BFb0040810 CrossRefGoogle Scholar
  26. 26.
    Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wullink, G., Van Houdenhoven, M., Hans, E.W., van Oostrum, J.M., van der Lans, M., Kazemier, G.: Closing emergency operating rooms improves efficiency. J. Med. Syst. 31(6), 543–546 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Benoit Beroule
    • 1
    Email author
  • Olivier Grunder
    • 1
  • Oussama Barakat
    • 2
  • Olivier Aujoulat
    • 3
  • Helene Lustig
    • 3
  1. 1.Univ. Bourgogne Franche Comté, UTBM, IRTES-SETBelfortFrance
  2. 2.Nanomedecine LabUniversity of Franche ComtéBesançonFrance
  3. 3.GHRMSA, Mulhouse Hospital CenterMulhouseFrance

Personalised recommendations