Skip to main content

Classical Physical Geodesy

  • Chapter
  • First Online:
Gravity Inversion and Integration

Abstract

This chapter presents the basics of classical physical geodesy , starting from the definitions of the gravity potential and gravity. The normal gravity potential is derived as the potential of a level ellipsoid plus the rotational potential of the ellipsoid. Normal gravity , defined as the gradient of the normal gravity potential, is presented on and above the level ellipsoid. The basic concepts of the geoid, reference ellipsoid, disturbing potential and geoid height are defined, as well as the classical definitions of gravity anomaly and disturbing potential. After derivation of the fundamental equation of physical geodesy , the gravity field components of the disturbing potential, gravity anomaly and its radial derivative are presented in spherical harmonics, followed by Kaula ’s power rule of the geopotential harmonics. The classical integral formulas of Poisson , Stokes, Hotine , Vening Meinesz and the vertical gradient of gravity anomaly are derived by spherical harmonics. Other spherical integral formulas are derived for determining the gravity anomaly and/or disturbing potential from deflections of the vertical (inverse Vening Meinesz formula ) and gravity gradient components. The classical procedures in geoid determination, including direct and secondary indirect topographic effects and downward continuation of gravity and primary indirect topographic effect on the disturbing potential, are described. Finally, the chapter deals with common height systems, such as geopotential numbers, dynamic, orthometric and normal heights, as well as normal-orthometric heights. Some approximate formulas to correct normal-orthometric heights to orthometric or normal heights are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bois GP (1961) Tables of indefinite integrals. Dover Publications Inc., New York

    Google Scholar 

  • Bruns H (1878) Die Figure der Erde. Publ. Preuss. Geod. Inst, Berlin

    Google Scholar 

  • Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63:281–296

    Article  Google Scholar 

  • Gauss FW (1828) Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am Ramsdenschen Zenithsector. Vanderschoeck und Ruprecht, Göttingen, pp 48–50

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Co., San Francisco

    Google Scholar 

  • Heiskanen WA, Vening Meinesz FA (1958) The earth and its gravity field. McGraw-Hill Inc

    Google Scholar 

  • Hotine M (1969) Mathematical geodesy. U. S. Department of Commerce, Washington, D.C

    Google Scholar 

  • Hwang C (1998) Inverse Vening Meinesz formula and deflection-geoid formula: applications to prediction of gravity and geoid over South China Sea. J Geod 72:304–312

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publications, London

    Google Scholar 

  • Martinec Z (1998) Boundary-value problems for gravimetric determination of a precise geoid. Lecture Notes in Earth Sciences 73. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. Trans from Russian by Israel Programme for Scientific Translations, Jerusalem

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133

    Google Scholar 

  • Pizzetti P (1911) Sopra il calcolo teorico delle deviazioni del geoide dall’ ellipsoide. Atti Accad Sci Torino 46:331

    Google Scholar 

  • Sjöberg LE (2000) Topographic effects by the Stokes-Helmert method of geoid and quasigeoid determinations. J Geod 74(2):255–268

    Article  Google Scholar 

  • Sjöberg LE (2014) On the topographic effects by Stokes formula. J Geod Sci 4:130–135

    Google Scholar 

  • Somagliana C (1929) Teoria generale del campo gravitazionale dell’ ellisoide di rotazione. Mem Soc Astron Ital, vol IV

    Google Scholar 

  • Stokes GG (1849) On the variation of gravity on the surface of the earth. Trans Cambridge Phil Soc 8:672–695

    Google Scholar 

  • Vening Meinesz FA (1928) A formula expressing the deflection of the plumb-line in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid. Proc Koninkl Ned Akad Wetenschap 31(3):315–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars E. Sjöberg .

Appendices

Appendix 1: Closed-Form Kernels

Referring to Bois (1961), the following formulas can be derived for \( 0 \le s \le 1 \) when using the notations \( L(x) = \sqrt {\left( {1 - 2xt + x^{2} } \right)} \) and \( L(s) = L \):

$$ S_{1} = \sum\limits_{n = 0}^{\infty } {s^{n} P_{n} \left( t \right)} = 1/L $$
(3.106)
$$ \begin{aligned} S_{2} & = \sum\limits_{n = 1}^{\infty } {\frac{{s^{n} }}{n}} P_{n} \left( t \right) = \int\limits_{0}^{s} {\sum\limits_{n = 1}^{\infty } {x^{n - 1} } P_{n} \left( t \right)} ds = \int\limits_{0}^{s} {\left( {\frac{1}{xL(x)} - \frac{1}{x}} \right)dx} = - \left[ {\ln 2\left( {1 - xt + L} \right)} \right]_{x = 0}^{s} \\ & = - \ln \left( {1 - st + L} \right) + \ln2 \\ \end{aligned} $$
(3.107)
$$ S_{3} = \sum\limits_{n = 0}^{\infty } {\frac{{s^{n + 1} }}{n + 1}} P_{n} \left( t \right) = \int\limits_{0}^{s} {\sum\limits_{n = 0}^{\infty } {x^{n} } P_{n} \left( t \right)} dx = \int\limits_{0}^{s} {\frac{dx}{L\left( x \right)}} = \left[ {\ln 2\left( {x - t + L\left( x \right)} \right)} \right]_{s = 0}^{s} = \ln \frac{s - t + L}{1 - t} $$
(3.108)

and

$$ \begin{aligned} S_{4} & = \sum\limits_{n = 0}^{\infty } {\frac{{s^{n + 2} }}{n + 2}} P_{n} \left( t \right) = \int\limits_{0}^{s} {\sum\limits_{n = 0}^{\infty } {x^{n + 1} } P_{n} \left( t \right)} dx = \int\limits_{0}^{s} {\frac{x}{L(x)}} ds = \left[ {{\text{L}}({\text{x}}) + t\,\ln 2\left( {x - t + L\left( x \right)} \right)} \right]_{x = 0}^{s} \\ & = L - 1 + t\,\ln \frac{s - t + L}{1 - t} \\ \end{aligned} $$
(3.109)

Appendix 2: Solutions to Exercises

Solution to Exercise 3.0:

\( \Delta W = \Delta V + \Delta\overline{\Omega } = 2 {\omega} + \left\{ {\begin{array}{*{20}c} {0} \\ { - 4}{\pi}{\rho} \\ \end{array} } \right\} \left\{ {\begin{array}{*{20}l} \rm{exterior\; of\; the\; Earth} \\ \rm{inside\; the\; Earth } \\ \end{array} } \right. \)

Solution to Exercise 3.1:

Let us introduce the notations g, a and \( g_{\Omega } \) for the magnitudes of gravity, gravitation and the centrifugal force. Then the maximum and minimum gravity are given at the poles and the Equator, respectively, with

$$ g_{\hbox{max} } = a - g_{\Omega } (\theta = 0) = a,\quad {\text{where}}\;a\;{\text{is}}\;{\text{constantly}}\; 9 8 1\;{\text{Gal}}. $$

and

$$ g_{\hbox{min} } = a - g_{\Omega } (\theta = \pi /2) $$

As \( g_{\Omega } \left( \theta \right) = \left| {\frac{{\partial \overline{\Omega } }}{\partial r}} \right| = R\omega^{2} \sin^{2} \theta \), it follows with R = 6371 km and \( \omega \) according to Table 1.1, that:

$$ g_{\Omega } (\theta = \pi /2) = 6.371 \times 10^{5} \times 7.292^{2} \times 10^{ - 10} = 0. 3 3 9 { }\left[ {\text{Gal}} \right]. $$

Hence, gravity at the Equator is 339 mGal less than at the pole for a spherical, homogeneous Earth model. (For this model the difference is only due to the rotation of the model.)

Solution to Exercise 3.2:

The gravity, gravitation and centrifugal force vectors (with notations adopting those in the previous exercise) are illustrated in Fig. 3.4a. If the Earth stops rotating, vector \( \bar{g} \) will move to and be equal to vector \( \bar{a} \). From Fig. 3.4b, the sine theorem can be applied, yielding the equation

$$ \frac{\sin \alpha }{{g_{\Omega } }} = \frac{\sin \delta }{a} = \frac{{\sin \left( {\pi - \varphi - \alpha } \right)}}{a} = \frac{{\sin \left( {\varphi + \alpha } \right)}}{a} = \frac{\sin \varphi \,\cos \alpha + \cos \varphi \,\sin \alpha }{a}, $$

which can be simplified to:

$$ \tan \alpha = \frac{{g_{\Omega } \sin \varphi }}{{a - g_{\Omega } \cos \varphi }}. $$

As \( \varphi = \pi /3 \) and \( \alpha \) is a small angel, the equation can be rewritten as:

$$ \alpha \approx \tan \alpha = \frac{{\sqrt 3 g_{\Omega } }}{{2a - g_{\Omega } }}. $$
Fig. 3.4
figure 4

The gravitation, centrifugal force and gravity a vectors and b their magnitudes in a triangle

In this case, \( g_{\Omega } = R\omega^{2} /4 = 0.085 \) [Gal], so that the numerical solution for the change of the plumb line is about \( (\alpha \approx ) \) 15″ towards the north.

Solution to Exercise 3.3

Let us start from the expression

$$ r\Delta g = - H - 2T $$

where

$$ H = r\frac{\partial T}{\partial r} = \bar{r} \cdot grad(T) = x\frac{\partial T}{\partial x} + y\frac{\partial T}{\partial y} + z\frac{\partial T}{\partial z} = ()T. $$

with

$$\left( {} \right) = \left( {x{\partial \over {\partial x}} + y{\partial \over {\partial y}} + z{\partial \over {\partial z}}} \right). $$

Then

$$ \frac{\partial H}{\partial u} = \frac{\partial T}{\partial u} + \left( {} \right)\frac{\partial T}{\partial u} $$

and

$$ \frac{{\partial^{2} H}}{{\partial u^{2} }} = 2\frac{{\partial^{2} T}}{{\partial u^{2} }} + \left( {} \right)\frac{{\partial^{2} T}}{{\partial u^{2} }}, $$

where \( u = x,y,z. \)

Hence

$$ \Delta H = 2\Delta T + \left( {} \right)\Delta T, $$

and therefore:

$$ \Delta \left( {r\Delta g} \right) = - \Delta H - 2\Delta T = 0. $$

Solution to Exercise 3.4

Insert (3.24b) into (3.23b) and apply it for r p = R:

$$ \Rightarrow \Delta g = \sum\limits_{n = 2}^{\infty } {\frac{n - 1}{{ {R} }}} {T}_{n} . $$

Insert “the hint”:

$$ \Delta g = \sum\limits_{n = 2}^{\infty } \Delta g_{n} = \sum\limits_{n = 2}^{\infty } {\frac{n - 1}{{ {R} }}} {\Omega}_{n} \Delta g_{n} \Rightarrow {\Omega}_{n} = R/(n - 1). $$

Hence, by applying “the hint” and (3.23b) once more and changing the order of summation and integration one obtains:

$$ T = {R}\sum\limits_{n = 2}^{\infty} {\frac{\Delta g_{n}}{{ {n - 1 } }}} = \frac{R}{4\pi }\iint\limits_{\sigma } {S\left( {\psi } \right)}\Delta gd\sigma, \quad\textit{where}\; {S\left( {\psi } \right)} = \sum\limits_{n = 2}^{\infty} {\frac{2n + 1}{{ {n - 1 } }}}P_{n}(\rm{cos}{\psi}).$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sjöberg, L.E., Bagherbandi, M. (2017). Classical Physical Geodesy. In: Gravity Inversion and Integration. Springer, Cham. https://doi.org/10.1007/978-3-319-50298-4_3

Download citation

Publish with us

Policies and ethics