Skip to main content

Suitable Methods for Monitoring HNV Farmland Using Bird Species

  • Chapter
  • First Online:
Birds as Useful Indicators of High Nature Value Farmlands

Abstract

In this chapter we summarize a list of technical and statistical approaches, useful for studying High Nature Value (HNV) farmlands, and biodiversity components. We also focus on the use of suitable frameworks to monitor HNV farmland using bird species, providing some information about bird data collection in the field. The concept of bioindicators and the use of bird species as environmental surrogates are briefly described, as well as the most common diversity metrics used to describe bird communities (taxonomic diversity, functional diversity and phylogenetic diversity). Finally, we provide some suggestions about statistical methods that can be followed in order to link the study of HNV farmlands to biodiversity patterns and environmental characteristics of farmlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bibby CJ, Hill DA, Burgess ND, Mustoe S. Bird census techniques. London: Academic; 2005.

    Google Scholar 

  2. Wuczyński A, Dajdok Z, Wierzcholska S, Kujawa K. Applying red lists to the evaluation of agricultural habitat: regular occurrence of threatened birds, vascular plants, and bryophytes in field margins of Poland. Biodivers Conserv [Internet]. Springer Netherlands; 2014 Apr 27 [cited 2016 Oct 12];23(4):999–1017. Available from: http://link.springer.com/10.1007/s10531-014-0649-y

  3. Tryjanowski P, Morelli F. Presence of cuckoo reliably indicates high bird diversity: a case study in a farmland area. Ecol Indic [Internet]. Elsevier Ltd; 2015;55:52–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1470160X15001363

  4. Kosicki JZ, Zduniak P, Ostrowska M, Hromada M. Are predators negative or positive predictors of farmland bird species community on a large geographical scale? Ecol Indic [Internet]. 2016;62:259–70. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1470160X15006342

    Article  Google Scholar 

  5. Żmihorski M, Kotowska D, Berg Å, Pärt T. Evaluating conservation tools in Polish grasslands: the occurrence of birds in relation to agri-environment schemes and Natura 2000 areas. Biol Conserv [Internet]. 2016;194:150–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006320715301865

    Article  Google Scholar 

  6. Surmacki A, Tryjanowski P. Efficiency of line transect and the point count methods in agricultural landscape of western Poland. Vogelwelt. 2000;120:201–4.

    Google Scholar 

  7. Budka M, Kokociński P. The efficiency of territory mapping, point-based censusing, and point-counting methods in censusing and monitoring a bird species with long-range acoustic communication—the corncrake Crex crex. Bird Study. Taylor & Francis; 2015;62(2):153–60.

    Google Scholar 

  8. Lindenmayer DB, Pierson J, Barton PS, Beger M, Branquinho C, Calhoun A, et al. A new framework for selecting environmental surrogates. Sci Total Environ [Internet]. Elsevier B.V.; 2015;538:1029–1038. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0048969715305593

  9. Rodrigues ASL, Brooks TM. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst. 2007;38(1):713–37.

    Article  Google Scholar 

  10. Carignan V, Villard M-A. Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess [Internet]. Kluwer Academic Publishers; 2002 [cited 2016 Oct 12];78(1):45–61. Available from: http://link.springer.com/10.1023/A:1016136723584

  11. Grantham HS, Pressey RL, Wells JA, Beattie AJ. Effectiveness of biodiversity surrogates for conservation planning: different measures of effectiveness generate a kaleidoscope of variation. PLoS One [Internet]. 2010 Jan [cited 2014 May 23];5(7):e11430. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2904370&tool=pmcentrez&rendertype=abstract

  12. Padoa-Schioppa E, Baietto M, Massa R, Bottoni L. Bird communities as bioindicators: the focal species concept in agricultural landscapes. Ecol Indic [Internet]. 2006 Jan [cited 2013 Jun 5];6(1):83–93. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1470160X05000671

  13. Carrascal LM, Cayuela L, Palomino D, Seoane J. What species-specific traits make a bird a better surrogate of native species richness? A test with insular avifauna. Biol Conserv [Internet]. 2012 Aug [cited 2014 Dec 14];152:204–11. Available from: http://www.sciencedirect.com/science/article/pii/S0006320712001917

  14. Caro TM. Conservation by proxy. Indicator, umbrella, keystone, flagship, and other surrogate species. Washington, DC: Island Press; 2010. 400 p.

    Google Scholar 

  15. Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, et al. Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol [Internet]. 2007 Jul 23 [cited 2014 Jul 14];45(1):141–50. Available from: http://doi.wiley.com/10.1111/j.1365-2664.2007.01393.x

  16. Lambeck RJ. Focal species: a multi-species umbrella for nature conservation. Conserv Biol. 1997;11(4):849–56.

    Article  Google Scholar 

  17. Noss RF. Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol [Internet]. 1990;4(4):355–64. Available from: http://doi.wiley.com/10.1111/j.1523-1739.1990.tb00309.x

    Article  Google Scholar 

  18. Burger J. Bioindicators: a review of their use in the environmental literature 1970–2005. Environ Bioindic [Internet]. Taylor & Francis; 2006 Jul [cited 2014 Apr 28];1(2):136–44. Available from: http://dx.doi.org/10.1080/15555270600701540

  19. Holt EA, Miller SW. Bioindicators: using organisms to measure environmental impacts. Nat Educ Knowl. 2010;3(10):8.

    Google Scholar 

  20. Caro TM, O’Doherty G. On the use of surrogate species in conservation biology. Conserv Biol. 1999;13(4):805–14.

    Article  Google Scholar 

  21. Loss SR, Ruiz MO, Brawn JD. Relationships between avian diversity, neighborhood age, income, and environmental characteristics of an urban landscape. Biol Conserv [Internet]. Elsevier Ltd; 2009 Nov [cited 2014 Jul 15];142(11):2578–85. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006320709002596

  22. Mikusinski G, Gromadzki M, Chylarecki P. Woodpeckers as indicators of bird diversity. Conserv Biol. 2001;15(1):208–17.

    Article  Google Scholar 

  23. Herrando S, Weiserbs A, Quesada J, Ferrer X, Paquet JY. Development of urban bird indicators using data from monitoring schemes in two large European cities. Anim Biodivers Conserv. 2012;35(1):141–50.

    Google Scholar 

  24. Drever MC, Aitken KEH, Norris AR, Martin K. Woodpeckers as reliable indicators of bird richness, forest health and harvest. Biol Conserv [Internet]. 2008 Mar [cited 2014 Jun 10];141(3):624–34. Available from: http://www.sciencedirect.com/science/article/pii/S0006320707004569

  25. Morelli F, Jerzak L, Tryjanowski P. Birds as useful indicators of High Nature Value (HNV) farmland in Central Italy. Ecol Indic. 2014;38:236–42.

    Article  Google Scholar 

  26. Noble D. The importance of indicators. Bird Popul. 2008;9:236–8.

    Google Scholar 

  27. Kosicki JZ, Chylarecki P. The hooded crow Corvus cornix density as a predictor of wetland bird species richness on a large geographical scale in Poland. Ecol Indic [Internet]. 2014 Mar [cited 2014 May 4];38:50–60. Available from: http://www.sciencedirect.com/science/article/pii/S1470160X13004032

  28. Gregory RD, van Strien A. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithol Sci. 2010;22:3–22.

    Article  Google Scholar 

  29. Skórka P, Mrtyka R, Wójcik JD. Species richness of breeding birds at a landscape scale—which habitat is the most important? Acta Ornithol. 2006;41(1):49–54.

    Article  Google Scholar 

  30. Gregory RD, van Strien A, Voříšek P, Gmelig Meyling AW, Noble DG, Foppen RPB, et al. Developing indicators for European birds. Philos Trans R Soc London B Biol Sci [Internet]. 2005 Feb 28 [cited 2014 Sep 14];360(1454):269–88. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569455&tool=pmcentrez&rendertype=abstract

  31. Princé K, Lorrillière R, Barbet-Massin M, Jiguet F. Predicting the fate of French bird communities under agriculture and climate change scenarios. Environ Sci Policy [Internet]. 2013;33:120–32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1462901113000944

    Article  Google Scholar 

  32. Devictor V, Julliard R, Jiguet F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos. 2008;117(4):507–14.

    Article  Google Scholar 

  33. Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D. Spatial segregation of specialists and generalists in bird communities. Ecol Lett [Internet]. 2006 Nov [cited 2014 Jan 22];9(11):1237–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17040326

  34. Reif J, Jiguet F, Šťastný K. Habitat specialization of birds in the Czech Republic: comparison of objective measures with expert opinion. Bird Study. 2010;57(2):197–212.

    Article  Google Scholar 

  35. Devictor V, Julliard R, Clavel J, Jiguet F, Lee A, Couvet D. Functional biotic homogenization of bird communities in disturbed landscapes. Glob Ecol Biogeogr [Internet]. 2008 Mar [cited 2011 Jul 19];17(2):252–61. Available from: http://doi.wiley.com/10.1111/j.1466-8238.2007.00364.x

  36. Aue B, Diekötter T, Gottschalk TK, Wolters V, Hotes S. How High Nature Value (HNV) farmland is related to bird diversity in agro-ecosystems—towards a versatile tool for biodiversity monitoring and conservation planning. Agric Ecosyst Environ [Internet]. Elsevier B.V.; 2014;194:58–64. Available from: http://dx.doi.org/10.1016/j.agee.2014.04.012

  37. Morelli F. Indicator species for avian biodiversity hotspots: combination of specialists and generalists is necessary in less natural environments. J Nat Conserv. 2015;27:54–62.

    Article  Google Scholar 

  38. Kujawa K. Population density and species composition changes for breeding bird species in farmland woodlots in western Poland between 1964 and 1994. Agric Ecosyst Environ. 2002;91:261–71.

    Article  Google Scholar 

  39. Laureto LMO, Cianciaruso MV, Samia DSM. Functional diversity: an overview of its history and applicability. Nat e Conserv [Internet]. Associação Brasileira de Ciência Ecológica e Conservação; 2015;13(2):112–6. Available from: http://dx.doi.org/10.1016/j.ncon.2015.11.001

  40. Luck GW, Carter A, Smallbone L. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity. PLoS One [Internet]. 2013 Jan [cited 2014 Jan 22];8(5):e63671. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3656964&tool=pmcentrez&rendertype=abstract

  41. Guilhaumon F, Albouy C, Claudet J, Velez L, Ben Rais Lasram F, Tomasini J-A, et al. Representing taxonomic, phylogenetic and functional diversity: new challenges for Mediterranean marine-protected areas. Divers Distrib [Internet]. 2015;21(2):175–87. Available from: http://doi.wiley.com/10.1111/ddi.12280

  42. Santini L, Belmaker J, Costello MJ, Pereira HM, Rossberg AG, Schipper AM, et al. Assessing the suitability of diversity metrics to detect biodiversity change. Biol Conserv. 2016

    Google Scholar 

  43. Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev [Internet]. 2016; Available from: http://doi.wiley.com/10.1111/brv.12252

  44. Magurran A. Measuring biological diversity. Oxford: Blackwell Science; 2004.

    Google Scholar 

  45. Pearman PB, Lavergne S, Roquet C, Wüest R, Zimmermann NE, Thuiller W. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Glob Ecol Biogeogr [Internet]. 2014 Nov 4 [cited 2013 Nov 6];23(4):414–24. Available from: http://doi.wiley.com/10.1111/geb.12127

  46. de Bello F, Lavorel S, Gerhold P, Reier Ü, Pärtel M. A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol Conserv [Internet]. 2010 Jan [cited 2014 Sep 10];143(1):9–17. Available from: http://www.sciencedirect.com/science/article/pii/S0006320709002055

  47. Petchey OL, Gaston KJ. Functional diversity (FD), species richness and community composition. Ecol Lett [Internet]. 2002 May [cited 2014 Apr 28];5(3):402–11. Available from: http://doi.wiley.com/10.1046/j.1461-0248.2002.00339.x

  48. Petchey OL, Gaston KJ. Functional diversity: back to basics and looking forward. Ecol Lett [Internet]. 2006 Jun [cited 2014 Jul 9];9(6):741–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16706917

  49. Villéger S, Mason NWH, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008;89(8):2290–301.

    Article  PubMed  Google Scholar 

  50. Frishkoff LO, Karp DS, M’Gonigle LK, Mendenhall CD, Zook J, Kremen C, et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science (80-) [Internet]. 2014 Sep 12 [cited 2014 Oct 17];345(6202):1343–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25214627

  51. Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv [Internet]. 1992;61(1):1–10. Available from: http://linkinghub.elsevier.com/retrieve/pii/0006320792912013

    Article  Google Scholar 

  52. EDGE of Existence. www.edgeofexistence.org [Internet]. 2015. Available from: www.edgeofexistence.org

  53. Meynard CN, Devictor V, Mouillot D, Thuiller W, Jiguet F, Mouquet N. Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Glob Ecol Biogeogr [Internet]. 2011 Feb 28 [cited 2011 Jun 20];20(6):893–903. Available from: http://doi.wiley.com/10.1111/j.1466-8238.2010.00647.x

  54. Topping CJ, Odderskær P, Kahlert J, Butler S, Vickery J, Norris K, et al. Modelling skylarks (Alauda arvensis) to predict impacts of changes in land management and policy: development and testing of an agent-based model. Bolhuis JJ, editor. PLoS One [Internet]. Public Library of Science; 2013 Jun 6 [cited 2016 Oct 13];8(6):e65803. Available from: http://dx.plos.org/10.1371/journal.pone.0065803

  55. Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett [Internet]. 2005 Sep [cited 2011 Jul 17];8(9):993–1009. Available from: http://doi.wiley.com/10.1111/j.1461-0248.2005.00792.x

  56. Parolo G, Rossi G, Ferrarini A. Toward improved species niche modelling: Arnica montana in the Alps as a case study. J Appl Ecol. 2008;45:1410–8.

    Article  Google Scholar 

  57. Elith J, Graham CH, Anderson RP, Dudık M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop). 2006;29:129–51.

    Article  Google Scholar 

  58. Araújo MB, Guisan A. Five (or so) challenges for species distribution modelling. J Biogeogr [Internet]. 2006 Oct [cited 2011 Jun 11];33(10):1677–88. Available from: http://doi.wiley.com/10.1111/j.1365-2699.2006.01584.x

  59. Jokimäki J, Suhonen J, Jokimäki-Kaisanlahti M-L, Carbó-Ramírez P. Effects of urbanization on breeding birds in European towns: impacts of species traits. Urban Ecosyst [Internet]. 2014 Oct 24 [cited 2014 Oct 29]; Available from: http://link.springer.com/10.1007/s11252-014-0423-7

  60. Gormley AM, Forsyth DM, Griffioen P, Lindeman M, Ramsey DS, Scroggie MP, et al. Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. J Appl Ecol [Internet]. Wiley-Blackwell; 2011 Feb [cited 2016 Oct 13];48(1):25–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21339812

  61. Elith J, Leathwick JR. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst [Internet]. Annual Reviews; 2009 Dec 6 [cited 2013 Aug 6];40(1):677–97. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.110308.120159

  62. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, et al. Predicting species distributions for conservation decisions. Ecol Lett [Internet]. 2013 Oct 17 [cited 2013 Nov 6];16:1424–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24134332

  63. Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Modell [Internet]. 2000;135(2–3):147–86. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304380000003549

    Article  Google Scholar 

  64. Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning JC. New trends in species distribution modelling. Ecography (Cop) [Internet]. 2010 Dec 22 [cited 2014 Feb 20];33(6):985–9. Available from: http://doi.wiley.com/10.1111/j.1600-0587.2010.06953.x

  65. Franklin J. Mapping species distributions: spatial inference and prediction. Cambridge: Cambridge University Press; 1997. 340 p.

    Google Scholar 

  66. De’ath G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology. 2002;83(4):1105–17.

    Google Scholar 

  67. Prasad AM, Iverson LR, Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems. 2006;9(2):181–99.

    Article  Google Scholar 

  68. Breiman L, Freidman J, Olshen R, Stone C. Classification and regression trees. Belmont: Chapman & Hall; 1984. 368 p.

    Google Scholar 

  69. Borcard D, Gillet F, Legendre P. Numerical ecology with R [Internet]. Media. New York, NY: Springer New York; 2011 [cited 2014 Jul 14]. 1–306 p. Available from: http://www.mendeley.com/catalog/numerical-ecology-r/

  70. Dufrene M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67:345–66.

    Google Scholar 

  71. De Cáceres M, Jansen F. “indicspecies” R package—functions to assess the strength and significance of relationship of species site group associations. 2016.

    Google Scholar 

  72. De Cáceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos [Internet]. 2010 Oct 14 [cited 2014 Jan 21];119(10):1674–84. Available from: http://doi.wiley.com/10.1111/j.1600-0706.2010.18334.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piotr Tryjanowski or Federico Morelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tryjanowski, P., Morelli, F. (2017). Suitable Methods for Monitoring HNV Farmland Using Bird Species. In: Morelli, F., Tryjanowski, P. (eds) Birds as Useful Indicators of High Nature Value Farmlands. Springer, Cham. https://doi.org/10.1007/978-3-319-50284-7_4

Download citation

Publish with us

Policies and ethics