Advertisement

Species-Specific Information for Enhancing Ecosystem Services

  • Roeland SamsonEmail author
  • Tine F. Ningal
  • Abhishek Tiwary
  • Rüdiger Grote
  • Silvano Fares
  • Hadas Saaroni
  • Jelle A. Hiemstra
  • Miglena Zhiyanski
  • Urša Vilhar
  • Paloma Cariñanos
  • Leena Järvi
  • Arkadiusz Przybysz
  • Marco Moretti
  • Naomi Zürcher
Chapter
  • 1.9k Downloads
Part of the Future City book series (FUCI, volume 7)

Understanding the multiple processes involved in the interactions between urban trees and their surrounding environment is of the utmost importance to determine the relationship between them and to assess what might happen under altered conditions such as those imposed by climate change or by increasing concentrations of air pollutants. In order to meet this objective and to evaluate the impact on different ecosystem services they provide, the numerous interactions between trees and their urban environment have to be considered holistically.

Because planting new trees in cities is just not a simple action –space is limited and needs are crucial – and trees do not exist in a void, we do not just want to plant any tree. We want to plant the righttree - the one that is most appropriate. In a typical urban setting, this means a tree that requires minimal management, can tolerate limited space, does not produce annoying litter and feeds our urban bees. But the successful candidate tree...

Keywords

Service Ecosystem Volatile Organic Compound Urban Environment Urban Tree Emission Volatile Organic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Hardiness

  1. http://selectree.calpoly.edu. Accessed 27 July 2016
  2. Roloff A, Bärtels A (2014) Flora der Gehölzer. Verlag, UlmerGoogle Scholar

Drought Tolerance

  1. http://selectree.calpoly.edu. Accessed 5 Aug 2016

Microclimate References

  1. Roloff A, Bärtels A (2014) Flora der Gehölzer. Verlag, UlmerGoogle Scholar

Air Pollution Mitigation

  1. Beckett KP, Freer-Smith PH, Taylor G (2000) Effective tree species for local air quality management. J Arboric 26(1):12–19Google Scholar
  2. Burkhardt J (2010) Hygroscopic particles on leaves: nutrients or desiccants? Ecol Monogr 80(3):369–399CrossRefGoogle Scholar
  3. Chen X, Zhou Z, Teng M et al (2015) Accumulation of three different sizes of particulate matter on plant leaf surfaces: effect on leaf traits. Arch Biol Sci 67(4):1257–1267CrossRefGoogle Scholar
  4. Dzierżanowski K, Popek R, Gawrońska H et al (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediat 13:1037–1046CrossRefGoogle Scholar
  5. EL-Khatib AA, Abd El-Rahman AM, Elsheikh OM (2011) Leaf geometric design of urban trees: potentiality to capture airborne particle pollutants. J Environ Stud 7:49–59Google Scholar
  6. Freer-Smith PH, Beckett KP, Taylor G (2005) Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides x trichocarpa ‘Beaupre´ ‘, Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ Pollut 133:157–167Google Scholar
  7. Popek R, Gawrońska H, Wrochna M et al (2013) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes – a 3-year study. Int J Phytoremediat 15:245–256CrossRefGoogle Scholar
  8. Przybysz A, Sæbø A, Hanslin HM et al (2014) Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci Total Environ 481:360–369CrossRefGoogle Scholar
  9. Sæbø A, Popek R, Nawrot B et al (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427–428:347–354CrossRefGoogle Scholar
  10. Sgrigna G, Sæbø A, Gawroński S et al (2015) Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy. Sci Total Environ 197:187–194Google Scholar
  11. Wang L, Gong H, Liao W et al (2015) Accumulation of particles on the surface of leaves during leaf expansion. Sci Total Environ 532:420–434CrossRefGoogle Scholar
  12. Yang J, Chang Y, Yan P (2015) Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmos Pollut Res 6:267–277CrossRefGoogle Scholar
  13. Soil Quality

    1. Kooch Y, Rostayee F, Hosseini SM (2016) Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. CATENA 144:65–73CrossRefGoogle Scholar
    2. Legout A, van der Heijden G, Jaffrain J et al (2016) Tree species effects on solution chemistry and major element fluxes: a case study in the Morvan (Breuil, France). Forest Ecol Manag 378:244–258CrossRefGoogle Scholar

    Precipitation Interception

    1. Armson D, Stringer P, Ennos AR (2013) The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For Urban Gree 12(3):282–286CrossRefGoogle Scholar
    2. Asadian Y, Weiler M (2009) A new approach in measuring rainfall interception by urban trees in coastal British Columbia. Water Qual Res J Can 1:16–25Google Scholar
    3. Kermavnar J (2015) Sestojne padavine v izbranih urbanih gozdovih Ljubljane. Stand precipitation in selected urban forests in the city of Ljubljana. Biotehniška fakulteta. Oddelek za gozdarstvo in obnovljive gozdne vire. Ljubljana, Univerza v LjubljaniGoogle Scholar
    4. Livesley SJ, Baudinette B, Glover D (2014) Rainfall interception and stem flow by eucalypt street trees – the impacts of canopy density and bark type. Urban For Urban Gree 13(1):192–197CrossRefGoogle Scholar

    Contribution to Biodiversity

    1. Crawford M (2000) Bee plants. Agroforestry Research TrustGoogle Scholar
    2. http://pfaf.org/user/Default.aspx. Accessed 16 Aug 2016
    3. http://selectree.calpoly.edu. Accessed 16 Aug 2016

    Allergenicity

    1. Cariñanos P, Casares-porcel M, Quesada-Rubio JM (2014) Estimating the allergenic potential of urban green spaces: a case-study in Granada, Spain. Landsc Urban Plan 123:134–144CrossRefGoogle Scholar
    2. Cariñanos P, Adinolfi C, Díaz de la Guardia C et al (2016) Characterization of allergen emission sources in urban areas. J Environ Qual 45:244–252CrossRefGoogle Scholar

    Toxicity

    1. Nelson LS, Shih RP, Ballick MJ et al (2007) Handbook of poisonous and injurious plants. Springer, The New York Botanical GardensGoogle Scholar
    2. Wagstaff J (2008) International poisonous plants checklist. An evidence-based reference. CRC Press/Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar

    BVOC Emissions

    1. Guenther A, Zimmerman P, Wildermuth M (1994) Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos Environ 28:1197–1210CrossRefGoogle Scholar
    2. Karl M, Guenther A, Köble R et al (2009) A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences 6:1059–1087CrossRefGoogle Scholar
    3. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33(1):23–88CrossRefGoogle Scholar
    4. Klinger LF, Li QJ, Guenther AB et al (2002) Assessment of volatile organic compound emissions from ecosystems of China. J Geophys Res 107(D21):4603CrossRefGoogle Scholar
    5. Nowak DJ, Crane DE, Stevens JC et al (2002) Brooklyn’s urban forest. USDA Forest Service, Newtown Square, pp. 1–107CrossRefGoogle Scholar
    6. Parra R, Gasso S, Baldasano JM (2004) Estimating the biogenic emissions of non-methane volatile organic compounds from the North Western Mediterranean vegetation of Catalonia, Spain. Sci Total Environ 329:241–259CrossRefGoogle Scholar
    7. Simon V, Dumergues L, Ponche JL et al (2006) The biogenic volatile organic compounds emission inventory in France: application to plant ecosystems in the Berre-Marseilles area (France). Sci Total Environ 372:164–182CrossRefGoogle Scholar
    8. Singh R, Singh MP, Singh AP (2014) Ozone forming potential of tropical plant species of the Vidarbha region of Maharashtra state of India. Urban For Urban Gree 13(4):814–820CrossRefGoogle Scholar

    Snow

    1. Bräuning A, De Riddder M, Zafirov N et al (2016) Tree-ring features: Inidcators of extremem weather impacts. IAWA J 37(2):206–231CrossRefGoogle Scholar
    2. Sano Y, Fukazawa K (1996) Timing of the occurrence of frost cracks in winter. Trees 11(1):47–53CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roeland Samson
    • 1
    Email author
  • Tine F. Ningal
    • 2
  • Abhishek Tiwary
    • 3
  • Rüdiger Grote
    • 4
  • Silvano Fares
    • 5
  • Hadas Saaroni
    • 6
  • Jelle A. Hiemstra
    • 7
  • Miglena Zhiyanski
    • 8
  • Urša Vilhar
    • 9
  • Paloma Cariñanos
    • 10
  • Leena Järvi
    • 11
  • Arkadiusz Przybysz
    • 12
  • Marco Moretti
    • 13
  • Naomi Zürcher
    • 14
  1. 1.Faculty of Sciences, Department of Bioscience EngineeringUniversity of AntwerpAntwerpenBelgium
  2. 2.School of GeographyUniversity College DublinDublinIreland
  3. 3.Faculty of Engineering and the EnvironmentNorthumbria UniversityNewcastleUK
  4. 4.Institute of Meteorology and Climate Research (IMK-IFU)Karlsruhe Institute of TechnologyKarlsruheGermany
  5. 5.Council for Agricultural Research and Economics, Research Centre for the Soil-Plant SystemGoriziaItaly
  6. 6.Department of Geography and the Human EnvironmentTel Aviv UniversityTel AvivIsrael
  7. 7.Applied Plant Research, Wageningen URWageningenThe Netherlands
  8. 8.Forest Research Institute, Bulgarian Academy of Sciences (FRI-BAS)SofiaBulgaria
  9. 9.Department of Forest EcologySlovenian Forestry Institute (SFI)LjubljanaSlovenia
  10. 10.Department of BotanyUniversity of GranadaGranadaSpain
  11. 11.Division of Atmospheric Sciences, Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  12. 12.Faculty of Horticulture Biotechnology and Landscape ArchitectureWarsaw University of Life Sciences (SGGW)WarsawPoland
  13. 13.Biodiversity and Conservation BiologySwiss Federal Research Institute WSLZürichSwitzerland
  14. 14.Urban Forester/Consulting Arborist/Certified Master Composter, Arbor AegisLuzernSwitzerland

Personalised recommendations