Skip to main content

Topological Quantum Computation with Non-Abelian Anyons in Fractional Quantum Hall States

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

  • 1206 Accesses

Abstract

We review the general strategy of topologically protected quantum information processing based on non-Abelian anyons, in which quantum information is encoded into the fusion channels of pairs of anyons and in fusion paths for multi-anyon states, realized in two-dimensional fractional quantum Hall systems. The quantum gates which are needed for the quantum information processing in these multi-qubit registers are implemented by exchange or braiding of the non-Abelian anyons that are at fixed positions in two-dimensional coordinate space. As an example we consider the Pfaffian topological quantum computer based on the fractional quantum Hall state with filling factor \(\nu _H=5/2\). The elementary qubits are constructed by localizing Ising anyons on fractional quantum Hall antidots and various quantum gates, such as the Hadamard gate, phase gates and CNOT, are explicitly realized by braiding. We also discuss the appropriate experimental signatures which could eventually be used to detect non-Abelian anyons in Coulomb blockaded quantum Hall islands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity we disregard here the case of relativistic parafermions and parabosons.

  2. 2.

    recall that the single-qubit Hadamard gate has been constructed in Eq. (10).

References

  1. Nielsen M, Chuang I (2000) Quantum Computation and Quantum Information. Cambridge University Press

    Google Scholar 

  2. Shor PW (1997) SIAM. J. Sci. Statist. Comput. 26:1484

    Google Scholar 

  3. Kitaev A (2003) Ann. Phys. 303:2. (N.Y.)

    Google Scholar 

  4. Sarma SD, Freedman M, Nayak C, Simon SH, Stern A (2008) Rev. Mod. Phys. 80:1083

    Article  Google Scholar 

  5. Birman JS (1974) Braids, links and mapping class groups, 82nd edn. Princeton University Press. (Ann. Math. Stud.)

    Google Scholar 

  6. Di Francesco P, Mathieu P, Sénéchal D (1997) Conformal field theory. Springer, New York

    Book  Google Scholar 

  7. Stern A (2008) Ann. Phys. 323:204

    Article  CAS  Google Scholar 

  8. Georgiev LS (2009) J. Phys. A: Math. Theor. 42:225203

    Article  Google Scholar 

  9. Sarma SD, Freedman M, Nayak C (2005) Phys. Rev. Lett. 94:166802

    Article  Google Scholar 

  10. Pan W, Xia JS, Shvarts V, Adams DE, Störmer HL, Tsui DC, Pfeiffer LN, Baldwin KW, West KW (1999) Phys. Rev. Lett. 83:3530

    Article  CAS  Google Scholar 

  11. Pan W, Xia JS, Stormer HL, Tsui DC, Vicente C, Adams ED, Sullivan NS, Pfeiffer LN, Baldwin KW, West KW (2008) Phys. Rev. B 77:075307

    Article  Google Scholar 

  12. Bonderson P, Nayak C, Shtengel K (2010) Phys. Rev. B 81:165308

    Article  Google Scholar 

  13. Ilan R, Grosfeld E, Stern A (2008) Phys. Rev. Lett. 100:086803

    Article  Google Scholar 

  14. Cappelli A, Georgiev LS, Zemba GR (2009) J. Phys. A: Math. Theor. 42:222001

    Article  Google Scholar 

  15. Georgiev LS (2010) EPL 91:41001

    Article  Google Scholar 

  16. Viola G, Das S, Grosfeld E, Stern A (2012) Phys. Rev. Lett. 109:146801

    Article  Google Scholar 

  17. Georgiev LS (2015) Nucl. Phys. B 894:284

    Article  CAS  Google Scholar 

  18. Georgiev LS (2015) Nucl. Phys. B 899:289

    Article  CAS  Google Scholar 

  19. Moore G, Read N (1991) Nucl. Phys. B 360:362

    Article  Google Scholar 

  20. Eisenstein J, Cooper K, Pfeiffer L, West K (2002) Phys. Rev. Lett. 88:076801

    Article  CAS  Google Scholar 

  21. Choi H, Kang W, Sarma SD, Pfeiffer L, West K (2008) Phys. Rev. B 77:081301

    Article  Google Scholar 

  22. Georgiev LS (2008) Nucl. Phys. B 789:552

    Article  Google Scholar 

  23. Georgiev LS (2006) Phys. Rev. B 74:235112

    Article  Google Scholar 

  24. Ahlbrecht A, Georgiev LS, Werner RF (2009) Phys. Rev. A 79:032311

    Article  Google Scholar 

  25. Matveev K (1999) Lect. Notes Phys. LNP 547:3

    Article  Google Scholar 

  26. Fröhlich J, Studer UM, Thiran E (1997) J. Stat. Phys. 86:821

    Article  Google Scholar 

  27. Cappelli A, Zemba GR (1997) Nucl. Phys. B 490:595

    Article  Google Scholar 

  28. Georgiev LS (2005) Nucl. Phys. B 707:347

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Alexander von Humboldt Foundation under the Return Fellowship and Equipment Subsidies Programs and by the Bulgarian Science Fund under Contract No. DFNI-E 01/2 and DFNI-T 02/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachezar S. Georgiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Georgiev, L.S. (2017). Topological Quantum Computation with Non-Abelian Anyons in Fractional Quantum Hall States. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_5

Download citation

Publish with us

Policies and ethics