Skip to main content

How Can the Green Sulfur Bacteria in the Depths of the Black Sea Use Quantum Computing for Light Harvesting?

  • Conference paper
  • First Online:
Book cover Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

Abstract

Long lasting coherence in photosynthetic pigment-protein complexes has been observed even at physiological temperatures [1,2,3]. Experiments have demonstrated quantum coherent behaviour in the long-time operation of the D-Wave quantum computer as well [4, 5]. Quantum coherence is the common feature between the two phenomena. However, the ‘decoherence time’ of a single flux qubit, the component of the D-Wave quantum computer, is reported to be on the order of nanoseconds, which is comparable to the time for a single operation and much shorter than the time required to carry out a computation on the order of seconds. An explanation for the factor of \(10^8\) discrepancy between the single flux qubit coherence time and the long-time quantum behaviour of an array of thousand flux qubits was suggested within a theory where the flux qubits are coupled to an environment of particles called gravonons of high density of states [6, 7]. The coherent evolution is in high dimensional spacetime and can be understood as a solution of Schrödinger’s time-dependent equation. Explanations for the quantum beats observed in 2D Fourier transform electronic spectroscopy of the Fenna-Matthews-Olson (FMO) protein complex in the green sulfur bacteria are presently sought in constructing transport theories based on quantum master equations where ‘good’ molecular vibrations (‘coloured noise’) in the chlorophyll and the surrounding protein scaffold knock the exciton oscillations back into coherence [8, 9]. These ‘good’ vibrations are claimed to have developed in three billion years of natural selection. These theories, however, face the discomforting experimental observation that “attempts to scramble vibrational modes or to shift resonances with isotopic substitution miserably failed to affect the beating signals” [10]. As a possible way out of this dilemma we adopted the formalism of the quantum computation to the quantum beats in the FMO protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engel GS, Calhoun TR, Read EL, Ahn T, Mancǎl T, Cheng Y, Blankenship RE, Fleming GR (2007) Nature 446:782

    Article  CAS  Google Scholar 

  2. Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E, Wen J, Blankenship RE, Engel GS (2010) Proc Natl Acad Sci USA 107:12766

    Article  CAS  Google Scholar 

  3. Panitchayangkoon G, Voronine DV, Abramavicius D, Caram JR, Lewis NHC, Mukamel S, Engel GS (2011) Proc Natl Acad Sci USA 108:20908

    Article  CAS  Google Scholar 

  4. Johnson MW et al (2011) Nature 473:194

    Article  CAS  Google Scholar 

  5. Dickson NG et al (2013) Nat Commun 4:1903. doi:10.1038/ncomms2920

    Article  CAS  Google Scholar 

  6. Drakova D, Doyen G (2015) arXiv:1220200 [quant-ph] 31 March 2015

  7. Drakova D, Doyen G (2015) J Phys: Conf Series 442:012049

    Google Scholar 

  8. Rebentrost P, Mohseni M, Aspuru-Guzik A (2009) J Phys Chem B 113:9942

    Article  CAS  Google Scholar 

  9. Mohseni M, Aspuru-Guzik A, Rebentrost P, Shabani A, Lloyd, Huelga SF, Plenio MB (2014) Quantum effects in biology. In: Mohseni YO, Engel GS, Plenio MB (eds) Cambridge University Press, Cambridge, p 159

    Google Scholar 

  10. Engel GS (2014) Quantum effects in biology. In: Mohseni YO, Engel GS, Plenio MB (eds) Cambridge University Press, Cambridge, p 144

    Google Scholar 

  11. Al-Khalili J, McFadden J (2014) Life on the edge—The coming of age of quantum biology. Bantam Press

    Google Scholar 

  12. Lee H, Cheng Y-C, Fleming GR (2007) Science 316:1462

    Article  CAS  Google Scholar 

  13. Singh VP, Westberg M, Wang C, Dahlberg PD, Gellen T, Gardiner AT, Cogdell RJ, Engel GS (2015) J Chem Phys 142:212446

    Article  CAS  Google Scholar 

  14. Harel E, Engel GS (2012) Proc Natl Acad Sci USA 109:706

    Article  CAS  Google Scholar 

  15. Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS (2013) J Phys Chem Lett 4:1404

    Article  CAS  Google Scholar 

  16. Collini E, Wang CY, Wilk KE, Curmi PM, Brumer P, Scholes GD (2010) Nature 463:644

    Article  CAS  Google Scholar 

  17. Dahlberg PD, Fidler AF, Caram JR, Long PD, Engel GS (2013) J Phys Chem Lett 4:3636

    Article  CAS  Google Scholar 

  18. Dahlberg PD, Norris GJ, Wang C, Viswanathan S, Singh VP, Engel GS (2015) J Chem Phys 143:101101

    Article  Google Scholar 

  19. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuro-Guzik A (2009) New J Phys 11:033003

    Article  Google Scholar 

  20. Mohseni M, Rebentrost P, Lloyd S, Aspuro-Guzik A (2008) J Chem Phys 129:174106

    Article  Google Scholar 

  21. Ishizaki A, Fleming GR (2009) Proc Natl Acad Sci USA 106:17255

    Article  Google Scholar 

  22. Hildner R, Brinks D, van Hulst NF (2011) Nat Phys 7:172

    Article  CAS  Google Scholar 

  23. Chiorescu I, Nakamura Y, Harmans CJPM, Mooij JE (2003) Science 299:1869

    Article  CAS  Google Scholar 

  24. Hybl JD, Ferro AA, Jonas DM (2001) J Chem Phys 115:6606

    Article  CAS  Google Scholar 

  25. Cowan ML, Ogilvie JP, Miller RJD (2004) Chem Phys Lett 386:184

    Article  CAS  Google Scholar 

  26. Brixner T, Mančal T, Stiopkin IV, Fleming GR (2004) J Chem Phys 121:4221

    Article  CAS  Google Scholar 

  27. Abramavicius D, Voronone DV, Mukamel S (2008) Biophys J 94:3613

    Article  CAS  Google Scholar 

  28. Nagy A, Prokhorenko V, Miller RJD (2006) Curr Opin Struct Biol 16:654

    Article  CAS  Google Scholar 

  29. Prezhdo OV, Rossky PJ (1998) Phys Rev Lett 81:5294

    Article  CAS  Google Scholar 

  30. Förster T (1948) Naturwissenschaften 33, 166; T. Förster (1946) Ann Physik 437:55

    Google Scholar 

  31. Marcus RA, Surin N (1985) Biochem Biophys Acta 811:265

    CAS  Google Scholar 

  32. Hopfield JJ (1974) Proc Natl Acad Sci USA 9:3640

    Article  Google Scholar 

  33. Shabani A, Mohseni M, Yang S, Ishizaki A, Plenio M, Rebentrost P, Aspuru-Guzik A, Cao J, Lloyd S, Silbey R (2014) Quantum effects in biology. In: Mohseni M, Omar Y, Engel G, Plenio MB (eds) Cambridge University Press, Cambridge, p 14

    Google Scholar 

  34. Dester D (1953) J Chem Phys 21:836

    Article  Google Scholar 

  35. Şener M, Strümpfer J, Hsin J, Chandler D, Sheuring S, Hunter CN, Schulten K (2011) Chem Phys Chem 12:518

    Article  Google Scholar 

  36. Hayes D, Wen J, Panitchayangkoon G, Blankenship RE, Engel GS (2011) Faraday Discuss 150:459

    Article  CAS  Google Scholar 

  37. Schlau-Cohen GS, Ishizaki A, Calhoun TR, Ginsberg NS, Ballottari M, Bassi R, Fleming GR (2012) Nat Chem 4:389

    Article  CAS  Google Scholar 

  38. Chenu A, Scholes GD (2015) Annu Rev Phys Chem 66:69

    Article  CAS  Google Scholar 

  39. Tiwari V, Peters WK, Jonas DM (2014) Nat Chem 6:173

    Article  CAS  Google Scholar 

  40. Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS, Wilcox DE, Yocum CF, Valkunas L, Abramavicius D, Ogilvie JP (2014) Nat Chem 6:706

    CAS  Google Scholar 

  41. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grodelle R (2014) Nat Phys 10:677

    Article  Google Scholar 

  42. Romero E, Novoderezhkin VI, van Grondelle R (2014) Quantum effects in biology. In: Mohseni M, Omar Y, Engel GS, Plenio MB (eds) Cambridge University Press, Cambridge, p 179

    Google Scholar 

  43. Chenu A, Christensson N, Kauffmann HF, Mancǎl T (2013) Sci Rep 3:2029

    Article  Google Scholar 

  44. Womick JM, Moran AM (2011) J Phys Chem B 115:1347

    Article  CAS  Google Scholar 

  45. Doyen G, Drakova D (2015) Found Phys 45:959

    Article  Google Scholar 

  46. Bell JS (2004) Speakable and unspeakable in quantum mechanics: the theory of local beables, 2nd edn. Cambridge University Press, Cambridge, p 52

    Google Scholar 

  47. Dempter AJ, Batho HF (1927) Phys Rev 30:644

    Article  Google Scholar 

  48. Braginski VB, Khalili FY (1992) Quantum measurement. Cambridge University Press, Cambridge, p 3

    Google Scholar 

  49. Hackermüller L, Uttenthaler S, Hornberger K, Reiger E, Brezger B, Zeilinger A, Arndt M (2003) Phys Rev Lett 91:090408

    Article  Google Scholar 

  50. Hornberger K, Gerlich S, Haslinger Ph, Nimmrichter S, Arndt M (2012) Rev Mod Phys 84:157

    Article  CAS  Google Scholar 

  51. Juffmann Th, Milic A, Müllneritsch M, Asenbaum P, Tsukernik A, Tüxen J, Mayor M, Cheshnovsky O, Arndt M (2012) Nat Nanotechnol 7:297

    Article  CAS  Google Scholar 

  52. Doyen G, Drakova D (2015) J Phys: Conf Series 442:012063

    Google Scholar 

  53. Drakova D, Doyen G (2016) arXiv:1605.06149v1 [physics.chem-ph] 11 May 2016

  54. Fleming GR, Yang M, Agarwal R, Prall BS, Kaufman LJ, Neuwahl F (2003) Bull Korean Chem Soc 24(8):1081

    Google Scholar 

Download references

Acknowledgements

We gratefully aknowledge the useful discussion and comments by G. Engel at the Gordon Center for Integrative Science, Chicago University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deiana Drakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Drakova, D., Doyen, G. (2017). How Can the Green Sulfur Bacteria in the Depths of the Black Sea Use Quantum Computing for Light Harvesting?. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_21

Download citation

Publish with us

Policies and ethics