Skip to main content

Integrated Computational Studies on Mutational Effects of a Nylon-Degrading Enzyme

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

  • 1169 Accesses

Abstract

We investigate the mutational effects on a particular mutant of the nylon oligomer hydrolase (NylB), Y170F, whose enzymatic activity is about 1/80 times smaller than that of the wild type (WT). To this aim, we have investigated them by several computational schemes and analyzed obtained data to reveal mutational effects due to Y170F. First, classical molecular dynamics (MD) simulations were performed to measure the stability of substrate-enzyme complexes. Owing to a replacement of Tyr170 by Phe170, it is found that water molecules flow to an active site, which might avoid the substrate degradation. Next, by using QM/MM Car-Parrinello molecular dynamics (QM/MM CPMD) complemented with meta-dynamics (Meta-D), we provide a detailed insight into the underlying acylation mechanism. Our results show that while in the WT the Tyr170 residue points the NH group towards the proton-acceptor site of an artificial amide bond, hence ready to react, in the Y170F this does not occur. The reason is ascribed to the absence of Tyr170 in the mutant, replaced by phenylalanine, unable to form H-bonds with the amide bond, thus resulting in an increase of the activation barrier by 11 kcal/mol. Nonetheless, despite the lack of H-bond between the Y170F and the mutant, also in this case the highest free energy barrier for the induced-fit is similar to that of WT revealed by Parallel Cascade MD (PaCS-MD) with free energy analyses. This seems to suggest that, in the induced-fit process, kinetics is little affected by the mutation. We also evaluated interaction energy between the substrate and amino acid residues in NylB and its changes upon the induced-fit processes by using fragment molecular orbital (FMO) method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horning EC, Stromberg VL, Lloyd HA (1952) J Am Chem Soc 74:5153

    Article  CAS  Google Scholar 

  2. Kinoshita S, Kageyama S, Iba K, Yamada Y, Okada H (1975) Agric Biol Chem 39:1219

    CAS  Google Scholar 

  3. Okada H, Negoro S, Kimura H, Nakamura S (1983) Nature 306:203

    Article  CAS  Google Scholar 

  4. Kato K, Ohtsuki K, Koda Y, Maekawa T, Yomo T, Negoro S, Urabe I (1995) Microbiology 141:2585

    Article  CAS  Google Scholar 

  5. Negoro S (2000) Appl Microbiol Biotechnol 54:461

    Article  CAS  Google Scholar 

  6. Nagai K, Iida K, Shimizu R, Kinugasa M, Izumi D, Kato I, Takeo M, Mochiji K, Negoro S (2014) Appl Microbiol Biotechnol, 98:8751

    Google Scholar 

  7. Negoro S, Shibata N, Tanaka Y, Yasuhira K, Shibata H, Hashimoto H, Lee Y, Oshima S, Santa R, Oshima S, Mochiji K, Goto Y, Ikegami T, Nagai K, Kato D, Takeo M, Higuchi Y (2012) J Biol Chem 287:5079

    Article  CAS  Google Scholar 

  8. Kato K, Fujiyama K, Hatanaka HS, Priyambada ID, Negoro S, Urabe I, Okada H (1991) Eur J Biochem 200:165

    Article  CAS  Google Scholar 

  9. Negoro S, Ohki T, Shibata N, Sasa K, Hayashi H, Nakano H, Yasuhira K, Kato D, Takeo M, Higuchi Y (2007) J Mol Biol 370:142

    Article  CAS  Google Scholar 

  10. Ohki T, Shibata N, Higuchi Y, Kawashima Y, Takeo M, Kato D, Negoro S (2009) Protein Sci 18:1662

    Article  CAS  Google Scholar 

  11. Kawashima Y, Ohki T, Shibata N, Higuchi Y, Wakitani Y, Matsuura Y, Nakata Y, Takeo M, Kato D, Negoro S (2009) FEBS J 276:2547

    Article  CAS  Google Scholar 

  12. Crowley PH (1975) J Theor Biol 50:461

    Article  CAS  Google Scholar 

  13. Johnson KA, Goody RS (2011) Biochemistry 50:8264

    Article  CAS  Google Scholar 

  14. Negoro S, Ohki T, Shibata N, Mizuno N, Wakitani Y, Tsurukame J, Matsumoto K, Kawamoto I, Takeo M, Higuchi Y (2005) J Biol Chem 280:39644

    Article  CAS  Google Scholar 

  15. Warshel A, Levitt M (1976) J Mol Biol 103:227

    Article  CAS  Google Scholar 

  16. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

  17. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  18. Laio A, Parrinello M (2002) Proc Natl Acad Sci U S A 99:12562

    Article  CAS  Google Scholar 

  19. Kamiya K, Baba T, Boero M, Matsui T, Negoro S, Shigeta Y (2014) J Phys Chem Lett 5:1210

    Article  CAS  Google Scholar 

  20. ∆G = −RTlnk cat +RTln(k B T/h); A reaction rate constant: k cat; Planck’s constant: h; Temperature:T; Boltzmann constant: k B

    Google Scholar 

  21. Jorgensen WL, Chandrasekhar J, Madura JD (1983) J Comput Phys 79:926

    CAS  Google Scholar 

  22. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San Francisco

    Google Scholar 

  23. Salomon-Ferrer R, Goetz AW, Poole D, Le Grand S, Walker RC (2013) J Chem Theory Comput 9:3878

    Article  CAS  Google Scholar 

  24. Li H, Robertson AD, Jensen JH (2005) Proteins 61:704

    Article  CAS  Google Scholar 

  25. Bas DC, Rogers DM, Jensen JH (2008) Proteins 73:765

    Article  CAS  Google Scholar 

  26. Olsson MHM, Søndergard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:525

    Article  CAS  Google Scholar 

  27. Søndergaard CR, Olsson MH, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:2284

    Article  Google Scholar 

  28. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327

    Article  CAS  Google Scholar 

  29. Baba T, Kamiya K, Matsui T, Shibata N, Higuchi Y, Kobayashi T, Negoro S, Shigeta Y (2011) Chem Phys Lett 507:157

    Article  CAS  Google Scholar 

  30. CPMD, http://www.cpmd.org/, Copyright IBM Corp 1990–2012, Copyright MPI für Festkörperforschung 1997-2001

  31. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264

    Article  CAS  Google Scholar 

  32. Troullier N, Martins JL (1993) Phys Rev B 1991:43

    Google Scholar 

  33. Werpetinsk KS, Cook M (1995) Phys Rev 52:R3397

    Article  Google Scholar 

  34. Syrén P-O (2013) FEBS J 280:3069

    Article  Google Scholar 

  35. Fischer E (1894) Ber Dt Chem Ges 27:2985

    Article  CAS  Google Scholar 

  36. Koshland DE (1958) Proc Natl Acad Sci, 44:98

    Google Scholar 

  37. Harada R, Kitao A (2013) J Chem Phys 139:035103

    Article  Google Scholar 

  38. Kästner J (2011) Comp Mol Sci 1:932

    Article  Google Scholar 

  39. Souaille M, Roux B (2001) Comput Phys Commun 135:40

    Article  CAS  Google Scholar 

  40. Baba T, Harada R, Nakano M, Shigeta Y (2014) J Comput Chem 35(16):1240–1247

    Article  CAS  Google Scholar 

  41. Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  42. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Phys Chem Chem Phys 16:10310

    Article  CAS  Google Scholar 

  43. Mochizuki Y, Yamashita K, Fukuzawa K, Takamatsu K, Watanabe H, Taguchi N, Okiyama Y, Tsuboi M, Nakano T, Tanaka S (2010) Chem Phys Lett 493:346

    Article  CAS  Google Scholar 

  44. Ando H, Shigeta Y, Baba T, Watanabe C, Okiyama Y, Mochizuki Y, Nakano M (2015) Mol Phys 113:319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express acknowledgement to Profs. S. Negoro, Y. Higuchi, and H. Shibata for their valuable suggestions from the experimental side and Profs. Y. Mochizuki, T. Matsui, M. Boero, M. Nakano, and Mr H. Ando for their tight collaboration for the integrated theoretical analyses. These works were supported from the Japan Society for the Promotion of Science (JSPS) Research Fellowship for Young Scientists, Grant-in-Aid for Scientific Research (Nos. 26102525, 26107004, and 22360350). Computer resources were provided from Research Center for Computational Science, Okazaki, Japan and Center of Computational Materials Science, Institute for Solid State Physics, The University of Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuteru Shigeta .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6320 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baba, T., Kamiya, K., Shigeta, Y. (2017). Integrated Computational Studies on Mutational Effects of a Nylon-Degrading Enzyme. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_19

Download citation

Publish with us

Policies and ethics