Skip to main content

Effects of Isotope Characteristics on the Electron System Ground State Energy of Helium-Like Ions

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

  • 1146 Accesses

Abstract

The main goal of this work is to establish a link between the energy characteristics of the ground state of helium-like ions and the isotope characteristics of the nucleus of the system. High-precision calculations of the electron ground state energies of helium-like ions require to take into account the effects associated with nuclear characteristics and electron correlations. In our previous work, we calculated ground state electron energies, mass corrections and mass polarization effects of helium-like isoelectronic ions for the main nuclides with nuclear charge from \(Z=2\) to \(Z=118\). In the present work are discussed the results for 3833 existing isotopes in the same range of nuclear charge. The results presented are without the inclusion of the mass polarization effect in the minimization procedure. The complex dependence of the ground state energy on the mass corrections and mass polarization effects as a function of charge Z and neutron number N are studied. Staggering analysis for the ground state energy dependence on Z and N helped establish the electron characteristic dependence on the nuclear magic numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlov RL, Maruani J, Mihailov LM, Velchev ChJ, Dimitrova-Ivanovich M, Stoianov JK, Van Neck D (2008) In: Dimitrova S (ed) Nuclear theory, vol 27. Sofia, BM Trade Ltd, p 249

    Google Scholar 

  2. Pavlov R, Mihailov L, Velchev Ch, Dimitrova-Ivanovich M, Stoyanov Zh, Chamel N, Maruani J (2010) J Phys Conf Ser 253:012075

    Article  Google Scholar 

  3. Velchev Ch, Pavlov R, Mihailov L, Chamel N, Stoyanov Zh, Mutafchieva Y, Ivanovich M (2014) C R Acad Bulg Sci 67(11):1513–1520

    CAS  Google Scholar 

  4. Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2013) NIST Atomic Spectra Database (ver. 5.1). National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/asd. Accessed 26 Aug 2014

  5. Velchev ChJ (2015) Study of quantum characteristics of heliumoid electron–nuclear systems. Dissertation, Institute for Nuclear Research and Nuclear Energy, BAS

    Google Scholar 

  6. Presnyakov LP, Shevelko VP, Yanev RK (1986) Elementarnyye protsessy s uchastiyem mnogozaryadnykh ionov (Elementary processes involving multiply charged ions). Energoatomizdat, Moskva

    Google Scholar 

  7. Vainshtein L.A, Shevelko VP (1986) Struktura i kharakteristiki ionov v goryachey plazme (Structure and characteristics of hot plasma ions) Nauka, Moskva

    Google Scholar 

  8. Beranyi D, Hock G (eds) (1988) High-energy ion-atom collisions. Springer, Berlin

    Google Scholar 

  9. Burke P (ed) (1983) Atoms in astrophysics. Plenum Press, New York

    Google Scholar 

  10. Dubetsky B (2014) arXiv:1407.7287. Accessed 29 July 2014

  11. Lee DM (1996) The extraordinary phases of liquid \(^3He\). Nobel Media AB. http://www.nobelprize.org/nobel_prizes/physics/laureates/1996/lee-lecture.html. Accessed 19 Jan 2016

  12. Cornell EA, Wieman CE (2001) Bose-Einstein condensation in a dilute gas; the first 70 years and some recent experiments. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/physics/laureates/2001/cornell-lecture.html. Accessed 19 Jan 2016

  13. Va’vra J (2014) Phys Lett B 736:169–173

    Article  Google Scholar 

  14. Muhin KN (1993) Eksperimentalnaya yadernaya fizika (Experimental Nuclear Physics), vol 1. Energoatomizdat, Moskva

    Google Scholar 

  15. Muhin KN (1993) Eksperimentalnaya yadernaya fizika (Experimental Nuclear Physics), vol 2. Energoatomizdat, Moskva3

    Google Scholar 

  16. Rychlewski J (ed) (2003) Explicitly correlated wavefunctions in chemistry and physics. In: Progress in theoretical chemistry and physics, vol 13. Kluwer, Dordrecht

    Google Scholar 

  17. Hylleraas EA (1928) Z Phys 48:469

    Article  CAS  Google Scholar 

  18. Hylleraas EA (1929) Z Phys 54:347

    Article  CAS  Google Scholar 

  19. Hylleraas EA (1930) Z Phys 60:624

    Article  CAS  Google Scholar 

  20. Hylleraas EA (1930) Z Phys 63:291

    Article  CAS  Google Scholar 

  21. Hylleraas EA (1930) Z Phys 65:209

    Article  CAS  Google Scholar 

  22. Pekeris CL (1958) Phys Rev 112:1649

    Article  CAS  Google Scholar 

  23. Pekeris CL (1959) Phys Rev 115:1216

    Article  CAS  Google Scholar 

  24. Pekeris CL (1962) Phys Rev 126:1470

    Article  CAS  Google Scholar 

  25. Schwartz HM (1956) Phys Rev 103:110

    Article  CAS  Google Scholar 

  26. Schwartz HM (1960) Phys Rev 120:483

    Article  CAS  Google Scholar 

  27. Thakkar AJ, Koga T (1994) Phys Rev A 50:854–856

    Article  CAS  Google Scholar 

  28. Hart JF, Herzberc G (1957) Phys Rev 106:79–82

    Article  CAS  Google Scholar 

  29. Kinoshita T (1957) Phys Rev 105:1490–1502

    Article  CAS  Google Scholar 

  30. Kinoshita T (1959) Phys Rev 115:366–374

    Article  CAS  Google Scholar 

  31. Coolidge AS, James HM (1937) Phys Rev 51:855–859

    Article  Google Scholar 

  32. Jolly P (1979) Int J Quant Chem 16:1149

    Article  CAS  Google Scholar 

  33. Koga T (1990) J Chem Phys 93:3720

    Article  CAS  Google Scholar 

  34. Koga T (1992) J Chem Phys 96:1276

    Article  CAS  Google Scholar 

  35. Koga T (1995) Z Phys D34:71

    Google Scholar 

  36. Koga T (1996) J Chem Phys 104:6308

    Article  CAS  Google Scholar 

  37. Bartlett JH (1937) Phys Rev 51:661

    Article  Google Scholar 

  38. Freund DE, Huxtable BD, Morgan JD III (1984) Phys Rev A 29:980

    Article  CAS  Google Scholar 

  39. Baker JD, Freund DE, Hill RN, Morgan JD III (1990) Phys Rev A 41:1247

    Article  CAS  Google Scholar 

  40. Drake GWF (1988) Nucl Instrum Methods Phys Res Sect B 31:7

    Article  Google Scholar 

  41. Willets L, Cherry IJ (1956) Phys Rev 103:112

    Article  Google Scholar 

  42. Wang PSC (1967) J Chem Phys 47:229

    Google Scholar 

  43. Frankowski K, Pekeris CL (1966) Phys Rev 146:46

    Article  CAS  Google Scholar 

  44. James HM, Coolidge AS (1936) Phys Rev 49:688

    Article  CAS  Google Scholar 

  45. Burke EA (1963) Phys Rev 130:1871

    Article  CAS  Google Scholar 

  46. Luchow A, Kleindienst H (1994) Int J Quant Chem 51:211

    Article  Google Scholar 

  47. King FW (1997) J Mol Struct Theochem 400:7

    Article  CAS  Google Scholar 

  48. Yan Z-C, Tambasco M, Drake GWF (1998) Phys Rev A 57:1652

    Article  CAS  Google Scholar 

  49. Thakkar AJ, Koga T, Tanabe T, Teruya H (2002) Chem Phys Lett 366:95

    Article  CAS  Google Scholar 

  50. Löwdin PO (1950) J Chem Phys 18(3):365

    Article  Google Scholar 

  51. Bethe HA, Salpeter EE (1957) Quantum mechanics of one- and two-electron atoms. Academic Press, New York

    Book  Google Scholar 

  52. Gombas P (1950) Theorie und Losungsmethoden des Mehrteilchenproblems der Wellen-mechanik. Springer, Basel

    Book  Google Scholar 

  53. Tuli JK (2005) Nuclear wallet cards. National Nuclear Data Center. http://www.nndc.bnl.gov/wallet/. Accessed 19 April 2006

Download references

Acknowledgements

The authors would like to thank Prof. Anna Georgieva, Prof. Svetla Drenska and Prof. Nikolay Minkov for the fruitful discussions. This work was supported by the Bulgarian National Science Fund under contract No. DFNI-T02/1. This work was supported by the Bulgarian National Science Fund under contract No. DFNI-E 01/2 and by a NUPNET-NEDENSAA project funded by the Bulgarian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Velchev, C.J. et al. (2017). Effects of Isotope Characteristics on the Electron System Ground State Energy of Helium-Like Ions. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_17

Download citation

Publish with us

Policies and ethics