Skip to main content

Non-Linear Chaotic Dynamics of Quantum Systems: Molecules in an Electromagnetic Field and Laser Systems

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Abstract

We present a general, uniform chaos-geometric formalism to analysis, modelling and forecasting a non-linear chaotic dynamics of quantum systems (such as diatomic molecules in an electromagnetic infrared field, laser and quantum generators system etc.). The approach is based on using quantum-mechanical and kinetical models for quantum and laser systems combined with the advanced techniques such as a multi-fractal method, mutual information approach, correlation integral and false nearest neighbour algorithms, the Lyapunov exponent’s (LE) analysis, and surrogate data method, prediction models etc. The results of the numerical studying a chaotic dynamics of diatomic molecules (on example of the GeO molecule in an infrared field) and some laser systems are listed. There are presented data on the topological and dynamical invariants, in particular, the correlation, embedding, Kaplan-Yorke dimensions, LE, Kolmogorov’s entropy etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prigogine I (1980) From being to becoming. Freeman, New York; Resonances, Springer Lecture notes in physics, Brändas E, Elander N (eds) (1989) vol 325. Springer, Berlin

    Google Scholar 

  2. Mandelbrot B (1983) The fractal geometry of nature. W.Freeman & Co, San Francisco

    Google Scholar 

  3. Arnold V (1978) Mathematical methods of classical mechanics. Academic Press, New York

    Google Scholar 

  4. Brändas E (1997) Advances in chemical physics: resonances, instability, and irreversibility. In: Prigogine I, Rice SA, vol 99. Wiley, pp 211–244

    Google Scholar 

  5. Engelmann AR, Natiello MA, Höghede M, Engdahl E, Brändas E (1986) Int J Quantum Chem 30:84

    Google Scholar 

  6. Blümel R, Reinhardt WP (2005) Chaos in atomic physics. Cambridge University Press, pp 1–344; Chirikov BV (1979) Phys Rep 52:263–379

    Google Scholar 

  7. Abarbanel H, Brown R, Sidorowich J, Tsimring L (1993) Rev Mod Phys 65:1331–1392

    Article  Google Scholar 

  8. Vedenov A, Ezhov A, Levchenko E (1987) Non-linear waves. Structure and bi-furcations. In: Gaponov-Grekhov A, Rabinovich M, Moscow, pp 53–69

    Google Scholar 

  9. Gutzwiller M (1990) Chaos in classical and quantum mechanics. Springer, New York; Ott E (2002) Chaos in dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  10. Gallager R (1986) Information theory and reliable communication. Wiley, New York; Glushkov AV (2008) Modern theory of a chaos. OSENU, Odessa

    Google Scholar 

  11. Glushkov A, Khetselius O, Brusentseva S, Zaichko P, Ternovsky V (2014) Advances in neural networks. Fuzzy systems and artificial intelligence. In: Balicki J (ed) Recent Adv. in computer engineering, vol 21. WSEAS, Gdansk, pp 69–75

    Google Scholar 

  12. Glushkov A, Svinarenko A, Buyadzhi V, Zaichko P, Ternovsky V (2014) Advances in neural networks. Fuzzy systems and artificial intelligence: Recent Advancement. In: Balicki J (ed) Computer engineering, vol 21. WSEAS, Gdansk, pp 143–150

    Google Scholar 

  13. Glushkov AV, Khokhlov VN, Tsenenko IA (2004) Atmospheric teleconnection patterns: wavelet analysis. Nonlinear proceedings in geophysics, vol 11, pp 285–296

    Google Scholar 

  14. Glushkov AV, Prepelitsa G, Svinarenko A, Zaichko P (2013) Dynamical Systems Theory, vol T1. In: Awrejcewicz J, Kazmierczak M, Olejnik P, Mrozowski J (eds) Lodz, Polland, pp 467–487

    Google Scholar 

  15. Lorenz EN (1963) J Atm Sci 20:130–141

    Article  Google Scholar 

  16. Packard N, Crutchfield J, Farmer J, Shaw R (1988) Phys Rev Lett 45:712–716

    Article  Google Scholar 

  17. Kennel M, Brown R, Abarbanel H (1992) Phys Rev A 45:3403–3412

    Article  CAS  Google Scholar 

  18. Takens F (1981) Dynamical systems and turbulence. In: Rand D, Young L. Springer, Berlin, pp 366–381

    Google Scholar 

  19. Mañé R (1981) Dynamical systems and turbulence. In: Rand D, Young L (eds) Springer, Berlin, pp 230–242

    Google Scholar 

  20. Grassberger P, Procaccia I (1983) Physica D 9:189–208

    Article  Google Scholar 

  21. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer J (1992) Phys. D. 58:77–94

    Article  Google Scholar 

  22. Fraser A, Swinney H (1986) Phys Rev A 33:1134–1140

    Article  CAS  Google Scholar 

  23. Havstad J, Ehlers C (1989) Phys Rev A 39:845–853

    Article  CAS  Google Scholar 

  24. Sano M, Sawada Y (1995) Phys Rev Lett 55:1082–1086

    Article  Google Scholar 

  25. Schreiber T (1999) Phys Rep 308:1–64

    Article  Google Scholar 

  26. Glushkov A, Bunyakova Y, Fedchuk A, Serbov N, Svinarenko A, Tsenenko I (2007) Sensor Electr Microsyst Technol 3(1):14–22

    Google Scholar 

  27. Prepelitsa GP, Glushkov AV, Lepikh YI, Buyadzhi VV, Ternovsky VB, Zaichko PA (2016) Sensor Electr Microsyst Technol (Copernicus) 11(4):43–58

    Google Scholar 

  28. Berman GP, Kolovskii A (1989) JETP 85:1552–1562

    Google Scholar 

  29. Zhang C, Katsouleas T, Joshi C (1993) Proceedings of short wavelength physics with intense laser pulses, San-Diego, USA, pp 21–28

    Google Scholar 

  30. Sakai M, Miyazaki N (1995) Appl Phys B 61:493–498

    Article  Google Scholar 

  31. Simons G, Parr RG, Finlan JM (1973) J Chem Phys 59:3229

    Article  CAS  Google Scholar 

  32. Connerade JP (1997) J Phys B: Atom Mol Opt Phys 30:L31–L36

    Article  CAS  Google Scholar 

  33. Krug A, Buchleitner A (2002) Phys Rev A 66:053416

    Article  Google Scholar 

  34. Cheng T, Liu J, Chen S, Guo H (2000) Phys Lett A 265:384390

    Article  Google Scholar 

  35. Benvenuto F, Casati G, Shepelyansky D (1994) Z Phys B 94:481–486

    Google Scholar 

  36. Fischer I, Hess O, Elsaber W, Gobel E (1994) Phys Rev Lett 73:2188–2191

    Article  CAS  Google Scholar 

  37. Ullmo D (2008) Rep Prog Phys 71: 026001

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. E. Brändas, J. Maruani, A. Tadjer, R. Pavlov for the invitation to present an invited report at the workshop QSCP-XX (Bulgaria, 2015). The help in editing the manuscript by Mr. Heike Rossel and Ms. Heena Naveen (Springer) is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Glushkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Glushkov, A.V. et al. (2017). Non-Linear Chaotic Dynamics of Quantum Systems: Molecules in an Electromagnetic Field and Laser Systems. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_10

Download citation

Publish with us

Policies and ethics