Skip to main content

Towards a Robust Fractional Order PID Stabilizer for Electric Power Systems

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

This chapter deals with the design and application of a robust Fractional Order PID (FOPID) power system stabilizer tuned by Genetic Algorithm (GA). The system’s robustness is assured through the application of Kharitonov’s theorem to overcome the effect of system parameter’s changes within upper and lower pounds. The FOPID stabilizer has been simplified during the optimization using the Oustaloup’s approximation for fractional calculus and the “nipid” toolbox of Matlab during simulation. The objective is to keep robust stabilization with maximum attained degree of stability against system’s uncertainty. This optimization will be achieved with the proper choice of the FOPID stabilizer’s coefficients (kp, ki, kd, λ, and δ) as discussed later in this chapter. The optimization has been done using the GA which limits the boundaries of the tuned parameters within the allowable domain. The calculations have been applied to a single machine infinite bus (SMIB) power system using Matlab and Simulink. The results show superior behavior of the proposed stabilizer over the traditional PID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboelela, M. A. S., Ahmed, M. F., & Dorrah, H. T. (2012). Design of aerospace control systems using fractional PID controller. Journal of Advanced Research, 3(2), 185–192.

    Article  Google Scholar 

  2. Azar, A. T., & Serrano F. E. (2015). Adaptive sliding mode control of the furuta pendulum. In: A. T. Azar & Q. Zhu (eds.), Advances and applications in sliding mode control systems, Studies in computational intelligence (Vol. 576, pp. 1–42). Berlin/Heidelberg: Springer-Verlag GmbH.

    Google Scholar 

  3. Barmish, B. R. (1994). New tools for robustness of linear systems. Macmillan Publisher.

    Google Scholar 

  4. Chen, G., & Malik, O. (1995). Tracking constrained adaptive power system stabilizer. IEE Proceedings, Generation, Transmission and Distribution, 142, 149–156.

    Article  Google Scholar 

  5. Chen, S., & Malik, O. P. (1995). H∞ optimization-based power system stabilizer design. IEE Proceedings, Generation, Transmission and Distribution, 142, 179–184.

    Article  Google Scholar 

  6. deMello, F. P., & Concordia, C. (1969). Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions on Power Apparatus and Systems, PAS-88, 316–327.

    Google Scholar 

  7. Dorcak, L., Petras, I., Kostial, I., & Terpak, J. (2001). State space controller design for the fractional-order regulated system. In Proceedings of the International Carpathian Control Conference (pp. 15–20).

    Google Scholar 

  8. Doyle, J. C., Francis, B. A., & Tannenbaum, A. R. (1992). Feedback control theory. New York: Macmillan Press.

    Google Scholar 

  9. Duc, G., & Font, S. (1999). H∞ theory and μ- analyse, tools for robustness. Paris: HERMES Science Publications.

    Google Scholar 

  10. El-Metwally, K. A., Elshafei, A. L., Soliman, H. M. (2006). A robust power-system stabilizer design using swarm optimization. International Journal Of Modeling, Identification and Control, 1(4).

    Google Scholar 

  11. Goldberg, D. E. (1989). Algorithms in search, optimization, and machine learning. Addison-Wiley Publishing Company, Inc.

    Google Scholar 

  12. Goldberg, D. E. (1991). Genetic algorithms in search optimization and machine learning. Reading, MA: Addison-Wesley Publishing Company, Inc.

    Google Scholar 

  13. Gosh, A., Ledwich, M. O., & Hope, G. (1989). Power system stabilizers based on adaptive control techniques. IEEE Transactions on Power Apparatus and Systems, PAS-103, 8, 1983–1989.

    Google Scholar 

  14. Klein, M., Rogers, G. J., Moorty, S., & Kundur, P. (1992). Analytical investigation of factors influencing PSS performance. IEEE Transaction on EC, 7(3), 382–390.

    Google Scholar 

  15. Kothari, M. L., Bhattacharya, K., & Nada, J. (1996). Adaptive power system stabilizer based on pole shifting technique. IEE Proceedings, 143, Pt. C, No. 1, 96–98.

    Google Scholar 

  16. Koza, J. R. (1991). Genetic evolution and co-evolution of computer programs. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial life II: SFI studies in the sciences of complexity (Vol. 10). Addison-Wesley.

    Google Scholar 

  17. Kundur, P. (1994). Power system stability and control. McGraw-Hill.

    Google Scholar 

  18. Lee, S. S., & Park, J. K. (1998). Design of reduced order observer based variable structure power system stabilizer for immeasurable state variables. IEE Proceedings Conference Transmission and Distribution, 145(5), 525–530.

    Article  Google Scholar 

  19. MacFarlane, D. C., & Glover, K. (1992). A loop shaping design procedure using H∞ synthesis. IEEE Transactions on Automatic Control, AC-37, 759–769.

    Google Scholar 

  20. Malik, O. P., Chen, G., Hope, G., Qin, Y., & Xu, G. (1992). An adaptive self-optimizing pole shifting control algorithm. IEE Proceedings of D, 139, 429–438.

    Google Scholar 

  21. Mehran, R., Farzan, R., & Hamid, M. (2003). Tuning of power system stabilizers via genetic algorithm for stabilization of power systems. In Proceedings of the IEEE International Conference on Systems, Man & Cybernetics (pp. 649–654). Washington, D.C., USA, 5–8 October.

    Google Scholar 

  22. Milos, S., & Martin, C. (2006). The fractional order PID controller outperforms the classical one. In 7th International Scientific-Technical Conference–Process Control, June 13–16, Kouty nad Desnou, Czech Republic.

    Google Scholar 

  23. Mrad, F., Karaki, S., & Copti, B. (2000). An adaptive fuzzy synchronous machine stabilizer. IEEE Transactions on Systems, Man, and Cybernetics, 30(1), 131–137.

    Article  Google Scholar 

  24. Petras, I. (1999). The fractional order controllers: Methods for their synthesis and application. Journal of Electrical Engineering, 50(9), 284–288.

    Google Scholar 

  25. Petras, I., Lubomir, D., & Imrich, K. (1998). Control quality enhancement by fractional order. In 2nd National Conference on Recent Trends in Information Systems (ReTIS-08) Controllers. Acta Montanistica Slovaca, 3(2), 143–148.

    Google Scholar 

  26. Petras, I., & Vinagre, B. M. (2002). Practical applications of digital fractional order controller to temperature control. In Acta Montanistica, Slovaca Rocnik, 2, 131–137.

    Google Scholar 

  27. Podlubny, I. (1999). Fractional-order systems and PIλDδ controllers. IEEE Trans. on Automatic Control, 44(1), 208–213.

    Article  MathSciNet  MATH  Google Scholar 

  28. Podlubny, I. P., Petras, I., Blas, M. V., Yang-Quan, C., O’ Leary, P., & Lubomir, D. (2003). Realization of fractional order controllers. Acta Montanistica Slovaca, 8.

    Google Scholar 

  29. Podlubny, I. P., Vinagre, B. M., O’ Leary, P., & Dorcak L. (2002). Analogue realizations of fractional-order controllers. Nonlinear Dynamics, 29, 281–296.

    Google Scholar 

  30. Rashidi M., Rashidi F., & Monavar, H. (2003). Tuning of power system stabilizers via genetic algorithm for stabilization of power systems. In Proceedings of the IEEE International Conference on Systems, Man & Cybernetics (pp. 649–654). Washington, D.C., USA, 5–8 October.

    Google Scholar 

  31. Samarasinghe, V. G., & Pahalawaththa, N. C. (1997). Damping of multimodal oscillations in power systems using variable structure control techniques. IEE Proceedings of Generation, Transmission and Distribution, 144(3), 323–331.

    Article  Google Scholar 

  32. Schlegel, M., & Cech, M. (2006). The fractional order PID controller outperforms the classical one. In 7th International Scientific-Technical Conference, June 13–16, Kouty nad Desnou, Czech Republic.

    Google Scholar 

  33. Shamsollahi, P., & Malik O. P. (1999). Adaptive control applied to synchronous generator. IEEE Transactions on Energy Conversion, I4(4), l341–1346.

    Google Scholar 

  34. Shu, H., & Chen, T. (1997). Robust digital design of power system stabilizers. In Proceedings of the American Control Conference, Albuquerque, 1953–1957.

    Google Scholar 

  35. Soliman, H., Elshafei, A. L., Shaltout, A. A., & Morsi, M. F. (2000). Robust power system stabilizer. IEE Proceedings, Generation, Transmission and Distribution, 147(5), 285–291.

    Article  Google Scholar 

  36. Soliman, H. M., & Sakr, M. M. F. (1988). Wide-range power system pole placer. IEE Proceedings, 135, Pt. C, No. 3, 195–201.

    Google Scholar 

  37. Sun, C., Zhao, Z., Sun, Y., & Lu, Q. (1996). Design of non-linear robust excitation control for multi-machine power system. IEE Proceedings, Generation, Transmission and Distribution, 143, 253–257.

    Article  Google Scholar 

  38. Valério, D., & Sá Da Costa, J. (2004). Ninteger: A fractional control toolbox for Mat lab. In First IFAC Workshop on Fractional Differentiation and Its Applications. Bordeaux: IFAC.

    Google Scholar 

  39. Vinagre, B. M., Podlubny, I., Dorcak, L., & Feliu, V. (2000). On fractional PID controllers: A frequency domain approach. In Proceedings of IFAC Workshop on Digital Control—Past, Present and Future of PID Control (pp. 53–58).

    Google Scholar 

  40. Xue, D., Chen, Y., & Atherton, D. P. (2007). Linear Feedback Control. Society for Industrial and Applied Mathematics. Philadelphia.

    Google Scholar 

  41. Young-Hyun, M., Heon-Su, R., Jong-Gi, L., Kyung-Bin, S., & Myong-Chul, S. (2002). Extended integral control for load frequency control with the consideration of generation-rate constraints. International Journal of Electrical Power & Energy Systems, 24(4), 263–269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A.S. Aboelela .

Editor information

Editors and Affiliations

Appendices

Appendix A: Derivation of k-Constants

All the variables with subscript 0 are values of variables evaluated at their pre-disturbance steady-state operating point from the known values of P0, Q0 and Vt0.

$$ i_{q0} = \frac{{P_{0} V_{to} }}{{\sqrt {(P_{0} x_{q} )^{2} + (V_{t0}^{2} + Q_{0} x_{q} )^{2} } }} $$
(A1)
$$ v_{d0} = i_{q0} x_{q} $$
(A2)
$$ v_{qo} = \sqrt {V_{t0}^{2}} - v_{t0}^{2} $$
(A3)
$$ i_{d0} = \frac{{Q_{0} + x_{q} i_{q0}^{2} }}{{v_{q0}^{{}} }} $$
(A4)
$$ E_{q0} = v_{q0} + i_{d0} x_{q} $$
(A5)
$$ E_{0} = \sqrt {(v_{d0} + x_{e} i_{q0} )^{2} + (v_{q0} - x_{e} i_{d0} )^{2} } $$
(A6)
$$ \delta_{0} = \tan^{ - 1} \frac{{(v_{d0} + x_{e} i_{q0} )}}{{(v_{q0} - x_{e} i_{d0} )}} $$
(A7)
$$ {\text{K}}_{ 1} = \frac{{x_{q} - x{{\prime }}_{d} }}{{x_{e} + x{{\prime }}_{d} }}i_{q0} E_{0} \,\sin \delta_{0} + \frac{{E_{q0} E_{0} \,\cos \delta_{0} }}{{x_{e} + x_{q} }} $$
(A8)
$$ {\text{K}}_{ 2} = \frac{{E_{0} \sin \delta_{0} }}{{x_{e} + x{{\prime }}_{d} }} $$
(A9)
$$ {\text{K}}_{ 3} = \frac{{x{{\prime }}_{d} + x_{e} }}{{x_{d} + x_{e} }} $$
(A10)
$$ {\text{K}}_{ 4} = \frac{{x_{q} - x{{\prime }}_{d} }}{{x_{e} + x{{\prime }}_{d} }}E_{0} \sin \delta_{0} $$
(A11)
$$ {\text{K}}_{ 5} = \frac{{x_{q} }}{{x_{e} + x_{q} }}\frac{{v_{d0} }}{{V_{t0} }}E_{0} \cos \delta_{0} - \frac{{x{{\prime }}d }}{{x_{e} + x{{\prime }}_{d} }}\frac{{v_{q0} }}{{V_{t0} }}E_{0} \sin \delta_{0} $$
(A12)
$$ {\text{K}}_{ 6} = \frac{{x_{e} }}{{x_{e} + x{{\prime }}_{d} }}\frac{{v_{q0} }}{{V_{t0} }} $$
(A13)

Appendix B

Nomenclature

All quantities are per unit on machine base.

D:

Damping Torque Coefficient

M:

Inertia constant

ω:

Angular speed

\( \updelta \) :

Rotor angle

Id, Iq :

Direct and quadrature components of armature current

\( x_{d} \,{\text{and}}\,x_{q} \) :

Synchronous reactance in d and q axis

\( x{{\prime }}_{d} \,{\text{and}}\,x{{\prime }}_{q} \) :

Direct axis and Quadrature axis transient reactance

E fd :

Equivalent excitation voltage

KE :

Exciter gain

TE :

Exciter time constant

Tm and Te :

Mechanical and Electrical torque

\( T{{\prime}}_{do} \) :

Field open circuit time constant

Vd and Vq :

Direct and quadrature components of terminal voltage

K1 :

Change in Te for a change in \( \updelta \) with constant flux linkages in the d axis

K2 :

Change in Te for a change in d axis flux linkages with constant \( \updelta \)

K3 :

Impedance factor

K4 :

Demagnetizing effect of a change in rotor angle

K5 :

Change in Vt with change in rotor angle for constant \( E{{\prime}}_{q}\)

K6 :

Change in Vt with change in \( E{{\prime}}_{q}\) constant rotor angle

Appendix C

The system data are as follows:

Machine (p.u):

$$ \begin{aligned} x_{d} & = 1.6\quad x{{\prime }}_{d} = 0.32 \\ x_{q} & = 1.55\quad T{{\prime }}_{d0} = 6\,{\text{s}} \\ {\text{D}} & { = 0} . 0\quad {\text{M = 10}}\,{\text{s}} \\ \end{aligned} $$
(C1)

Transmission line (p.u):

$$ {\text{r}}_{\text{e}} = 0.0\quad {\text{x}}_{\text{e}} = 0. 4 $$
(C2)

Exciter:

$$ {\text{K}}_{\text{E}} = 2 5.00\quad {\text{T}}_{\text{E}} = 0.0 5\,{\text{s}} $$
(C3)

Nominal Operating point:

$$ \begin{aligned} V_{t0} = 1.0\quad P_{0} = 0. 8\hfill \\ Q_{0} = 0. 3 \quad \delta_{0} = 4 5^{\circ} \hfill \\\upomega_{0} = 314 \hfill \\ \end{aligned} $$
(C4)

Others

$$ \begin{aligned} {\text{k}}_{3} & = 1/2.78 \\ {\text{v}} & = 1.0 \\ {\text{T}}_{\text{w}} & = 5 \\ \end{aligned} $$
(C5)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aboelela, M.A., Soliman, H.M. (2017). Towards a Robust Fractional Order PID Stabilizer for Electric Power Systems. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics