Skip to main content

Robust Adaptive Interval Type-2 Fuzzy Synchronization for a Class of Fractional Order Chaotic Systems

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

This chapter presents a novel Robust Adaptive Interval Type-2 Fuzzy Logic Controller (RAIT2FLC) equipped with an adaptive algorithm to achieve synchronization performance for fractional order chaotic systems. In this work, by incorporating the \( H^{\infty } \) tracking design technique and Lyapunov stability criterion, a new adaptive fuzzy control algorithm is proposed so that not only the stability of the adaptive type-2 fuzzy control system is guaranteed but also the influence of the approximation error and external disturbance on the tracking error can be attenuated to an arbitrarily prescribed level via the H tracking design technique. The main contribution in this work is the use of the interval type-2 fuzzy logic controller and the numerical approximation method of Grünwald-Letnikov in order to improve the control and synchronization performance comparatively to existing results. By introducing the type-2 fuzzy control design and robustness tracking approach, the synchronization error can be attenuated to a prescribed level, even in the presence of high level uncertainties and noisy training data. A simulation example on chaos synchronization of two fractional order Duffing systems is given to verify the robustness of the proposed AIT2FLC approach in the presence of uncertainties and bounded external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguila-Camacho, N., Duarte-Mermoud, M. A., & Delgado-Aguilera, E. (2016). Adaptive synchronization of fractional Lorenz systems using a re duce d number of control signals and parameters. Chaos, Solitons and Fractals, 87, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1997). Chaos in a fractional order Duffing system. In: Proceedings ECCTD (pp. 1259–1262).

    Google Scholar 

  3. Azar, A. T. (2010). Adaptive neuro-fuzzy systems. In: A. T. Azar (ed.), Fuzzy Systems. IN-TECH, Vienna, Austria. ISBN 978-953-7619-92-3.

    Google Scholar 

  4. Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications (IJFSA), 2(4), 1–28.

    Article  Google Scholar 

  5. Azar, A. T., Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Germany: Springer. ISBN 978-3-319-13131-3.

    Google Scholar 

  6. Azar, A. T., Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3.

    Google Scholar 

  7. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.

    Google Scholar 

  8. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.

    Google Scholar 

  9. Castillo, O., & Melin, P. (2008). Type-2 fuzzy logic: Theory and applications. Heidelberg: Springer.

    MATH  Google Scholar 

  10. Castillo, O., & Melin, P. (2012). Recent advances in interval type-2 fuzzy systems. Springer Briefs in Computational Intelligence. doi:10.1007/978-3-642-28956-9_2.

    MATH  Google Scholar 

  11. Castro, J. L. (1995). Fuzzy logical controllers are universal approximators. IEEE Transactions on Systems, Man and Cybernetics, 25, 629–635.

    Article  Google Scholar 

  12. Cazarez-Castro, N. R., Aguilar, L. T., & Castillo, O. (2012). Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for non-smooth mechanical systems. Engineering Applications of Artificial Intelligence, 25(5), 971–979.

    Article  Google Scholar 

  13. Chen, Y., Wei, Y., Liang, S., & Wang, Y. (2016). Indirect model reference adaptive control for a class of fractional order systems. Communications in Nonlinear Science and Numerical Simulation.

    Google Scholar 

  14. Diethlem, K. (2003). Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing, 71, 305–319.

    Article  MathSciNet  Google Scholar 

  15. Efe, M. O. (2008). Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 38(6), 1561–1570.

    Article  Google Scholar 

  16. Ge, Z.-M., & Ou, C.-Y. (2008). Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos, Solitons and Fractals, 35(4), 705–717.

    Article  Google Scholar 

  17. Ghaemi, M., & Akbarzadeh T. M. R. (2011). Optimal design of adaptive interval type-2 fuzzy sliding mode control using genetic algorithm. In Proceedings of the 2nd International Conference on Control, Instrumentation, and Automation, Shiraz, Iran (pp. 626–631).

    Google Scholar 

  18. Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos on a fractional Chua’s system. IEEE Transactions on Circuits and Systems Theory and Applications, 42(8), 485–490.

    Google Scholar 

  19. Hilfer, R. (2001). Applications of fractional calculus in physics. New Jersey: World Scientific.

    MATH  Google Scholar 

  20. Karnik, N. N., & Mendel, J. M. (1998). Type-2 fuzzy logic systems: Type-reduction. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA (pp. 2046–2051).

    Google Scholar 

  21. Karnik, N. N., Mendel, J. M., & Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7, 643–658.

    Article  Google Scholar 

  22. Khettab, K., Bensafia, Y., & Ladaci, S. (2014). Robust adaptive fuzzy control for a class of uncertain nonlinear fractional systems. In Proceedings of the Second International Conference on Electrical Engineering and Control Applications ICEECA’2014, Constantine, Algeria.

    Google Scholar 

  23. Khettab, K., Bensafia, Y., & Ladaci, S. (2015). Fuzzy adaptive control enhancement for non-affine systems with unknown control gain sign. In Proceedings of the International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA’2015, Monastir, Tunisia (pp. 616–621).

    Google Scholar 

  24. Khettab, K., Ladaci, S., & Bensafia, Y. (2016). Fuzzy adaptive control of fractional order chaotic systems with unknown control gain sign using a fractional order Nussbaum gain. IEEE/CAA Journal of Automatica Sinica.

    Google Scholar 

  25. Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Amsterdam: Elsevier.

    MATH  Google Scholar 

  26. Ladaci, S., & Charef, A. (2002). Commande adaptative à modèle de référence d’ordre fractionnaire d’un bras de robot (in French) Communication Sciences & Technologie, ENSET Oran, Algeria (Vol. 1, pp. 50–52).

    Google Scholar 

  27. Ladaci, S., & Charef, A. (2006). On fractional adaptive control. Nonlinear Dynamics, 43(4), 365–378.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ladaci, S., & Charef, A. (2006). An adaptive fractional PIλDμ controller. In Proceedings of the Sixth Int. Symposium on Tools and Methods of Competitive Engineering, TMCE 2006, Ljubljana, Slovenia (1533–1540).

    Google Scholar 

  29. Ladaci, S., Loiseau, J. J., & Charef, A. (2008). Fractional order adaptive high-gain controllers for a class of linear systems. Communications in Nonlinear Science and Numerical Simulation, 13(4), 707–714.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ladaci, S., Charef, A., & Loiseau, J. J. (2009). Robust fractional adaptive control based on the strictly positive realness condition. International Journal of Applied Mathematics and Computer Science, 19(1), 69–76.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ladaci, S., Loiseau, J. J., & Charef, A. (2010). Adaptive internal model control with fractional order parameter. International Journal of Adaptive Control and Signal Processing, 24, 944–960.

    Article  MathSciNet  MATH  Google Scholar 

  32. Ladaci, S., & Charef, A. (2012). Fractional order adaptive control systems: A survey. In E.W. Mitchell & S.R. Murray (Eds.), Classification and application of fractals (pp. 261–275). Nova Science Publishers Inc.

    Google Scholar 

  33. Ladaci, S., & Khettab, K. (2012). Fractional order multiple model adaptive control. International Journal of Automation and Systems Engineering, 6(2), 110–122.

    Google Scholar 

  34. Ladaci, S., & Bensafia, Y. (2016). Indirect fractional order pole assignment based adaptive control. Engineering Science and Technology, an International Journal, 19, 518–530.

    Article  Google Scholar 

  35. Lee, C.-H., & Chang, Y.-C. (1996). H Tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach. IEEE Transactions on Systems, 4(1).

    Google Scholar 

  36. Lin, T.-C., Chen, M.-C., Roopaei, M., & Sahraei, B. R. (2010). Adaptive type-2 fuzzy sliding mode control for chaos synchronization of uncertain chaotic systems. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona (pp. 1–8).

    Google Scholar 

  37. Lin, T. C., Kuo, M. J., & Hsu, C. H. (2010). Robust adaptive tracking control of multivariable nonlinear systems based on interval type-2 fuzzy approach. International Journal of Innovative Computing, Information and Control, 6(1), 941–961.

    Google Scholar 

  38. Lin, T.-C., & Kuo, C.-H. (2011). H synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Transactions, 50, 548–556.

    Article  Google Scholar 

  39. Lin, T. C., Kuo, C.-H., Lee, T.-Y., & Balas, V. E. (2012). Adaptive fuzzy H tracking design of SISO uncertainnonlinear fractional order time-delay systems. Nonlinear Dynamics, 69, 1639–1650.

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, T. C., Lee, T.-Y., Balas, & V. E. (2011). Synchronization of uncertain fractional order chaotic systems via adaptive interval type-2 fuzzy sliding mode control. In Proceedings of the IEEE International Conference on Fuzzy Systems, Taipei, Taiwan.

    Google Scholar 

  41. Lin, T.-C., Lee, T.-Y., & Balas, V. E. (2011). Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons and Fractals, 44, 791–801.

    Article  MATH  Google Scholar 

  42. Lin, T. C., Liu, H. L., & Kuo, M. J. (2009). Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems. Engineering Applications of Artificial Intelligence, 22(3), 420–430.

    Article  Google Scholar 

  43. Lin, T. C., Wang, C.-H., & Liu, H.-L. (2004). Observer-based indirect adaptive fuzzy-neural tracking control for nonlinear SISO systems using VSS and H approaches. Fuzzy Sets and Systems, 143(2), 211–232.

    Article  MathSciNet  MATH  Google Scholar 

  44. Mendel, J. M. (2007). Advances in type-2 fuzzy sets and systems. Information Sciences, 177(1), 84–110.

    Article  MathSciNet  MATH  Google Scholar 

  45. Mendel, J. M., & John, R. I. B. (2002). Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 10(2), 117–127.

    Article  Google Scholar 

  46. N’Doye, I. (2011). Généralisation du lemme de Gronwall-Bellman pour la stabilisation des systèmes fractionnaires. Ph.D. Thesis, Ecole doctorale IAEM Lorraine, Morocco.

    Google Scholar 

  47. Neçaibia, A., & Ladaci, S. (2014). Self-tuning fractional order PIλDμ controller based on extremum seeking approach. International Journal of Automation and Control, Inderscience, 8(2), 99–121.

    Article  Google Scholar 

  48. Neçaibia, A., Ladaci, S., Charef, A., & Loiseau, J. J. Fractional order extremum seeking control. In Proceedings of the 22nd Mediterranean Conference on Control and Automation (pp. 459–462) (MED’14, Palermo, Italy on June 16–19).

    Google Scholar 

  49. Odibat, Z. M. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.

    Article  MathSciNet  MATH  Google Scholar 

  50. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.4099.

    Google Scholar 

  51. Petráš, I. (2006). A note on the fractional-order cellular neural networks. In Proceedings of the IEEE International World Congress on Computational Intelligence, International Joint Conference on Neural Networks (pp. 16–21).

    Google Scholar 

  52. Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos, Solitons and Fractals, 38(1), 140–147.

    Article  Google Scholar 

  53. Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.

    MATH  Google Scholar 

  54. Qilian, L., & Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems, 8(5), 535–550.

    Article  MATH  Google Scholar 

  55. Rabah, K., Ladaci, S., & Lashab, M. (2016). Stabilization of a Genesio-Tesi chaotic system using a fractional order PIλDµ regulator. International Journal of Sciences and Techniques of Automatic Control and Computer Engineering, 10(1), 2085–2090.

    Google Scholar 

  56. Srivastava, H. M., & Saxena, R. K. (2001). Operators of fractional integration and their applications. Applied Mathematics and Computation, 118, 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  57. Tian, X., Fei, S., & Chai, L. (2014). Adaptive control of a class of fractional-order nonlinear complex systems with dead-zone nonlinear inputs. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China (pp. 1899–1904).

    Google Scholar 

  58. Vaidyanathan, S., & Azar, A. T. (2016). Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.

    Article  Google Scholar 

  59. Vinagre, B. M., Petras, I., Podlubny, I., & Chen, Y.-Q. (2002). Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dynamics, 29, 269–279.

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, L. X. (1992). Fuzzy systems are universal approximators. In Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego (pp. 1163–1170).

    Google Scholar 

  61. Wang, C.-H., Liu, H.-L., & Lin, T.-C. (2002). Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems. IEEE Transactions on Fuzzy Systems, 10(1), 39–49.

    Article  Google Scholar 

  62. Wang, C.-H., Cheng, C.-S., & Lee, T.-T. (2004). Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 34(3), 1462–1477.

    Article  Google Scholar 

  63. Wei, Y., Sun, Z., Hu, Y., & Wang, Y. (2015). On fractional order composite model reference adaptive control. International Journal of Systems Science. doi:10.1080/00207721.2014.998749.

    MATH  Google Scholar 

  64. Wei, Y., Tse, P. W., Yao, Z., & Wang, Y. (2016). Adaptive backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dynamics. doi:10.1007/s11071-016-2945-4.

    MathSciNet  MATH  Google Scholar 

  65. Yuan, J., Shi, B., & Yu, Z. (2014). Adaptive sliding control for a class of fractional commensurate order chaotic systems. mathematical problems in engineering. Article ID 972914.

    Google Scholar 

  66. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8(3), 199–249.

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, R., & Yang, S. (2011). Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dynamics, 66, 831–837.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khatir Khettab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khettab, K., Bensafia, Y., Ladaci, S. (2017). Robust Adaptive Interval Type-2 Fuzzy Synchronization for a Class of Fractional Order Chaotic Systems. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics