Skip to main content

On the Electronic Realizations of Fractional-Order Phase-Lead-Lag Compensators with OpAmps and FPAAs

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Abstract

It is well known that the fractional-order phase-lead-lag compensators can achieve control objectives that are not always possible by using their integer-order counterparts. However, up to now one can find only a few of publications discussing the strategies for parameters’ tuning of these compensators, with only simulation results reported. This is due in part to the implicit difficulties on the implementation of circuit elements with frequency responses of the form \(s^{\pm \lambda }\) that are named “fractances”. In this regard, there exist approximations with rational functions, but the drawback is the difficulty to approximate the required values with the ones of the commercially-available resistances and capacitors. Consequently, fractional compensators have not been appreciated by the industry as it is in the academia. Therefore, motivated by the lack of reported implementations, this chapter is structured as a tutorial that deals with the key factors to perform, with the frequency-domain approach, the design, simulation and implementation of integer-order and fractional-order phase-lead-lag compensators. The circuit implementations are performed with Operational Amplifiers (OpAmps) and with Field Programmable Analog Arrays (FPAA). Emphasis is focused in the obtaining of commercially-available values of resistances and capacitors. Therefore, the design procedure starts with the use of equations that provide the exact and unique solution for each parameter of the compensator, avoiding conventional trial-and-error procedures. Then, five OpAmp-based configurations for integer-order and fractional-order realizations are described in terms of basic analog building blocks, such as integrators or differential amplifiers, among others. The corresponding design equations are also provided. Then, six examples are presented for both, OpAmp-based and FPAA-based implementations with the simulation and experimental results discussed regarding other results reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AN231E04 Datasheet Rev 1.2. (2012). http://www.anadigm.com/an231e04.asp

  2. Angel, L., & Viola, J. (2015). Design and statistical robustness analysis of FOPID, IOPID and SIMC PID controllers applied to a motor-generator system. IEEE Latin America Transactions, 13(12), 3724–3734. doi:10.1109/TLA.2015.7404900.

    Article  Google Scholar 

  3. Antoniou, A. (1972). Floating negative-impedance converters. IEEE Transactions on Circuit Theory, 19(2), 209–212.

    Article  Google Scholar 

  4. Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. doi:10.1007/s00521-014-1560-x.

    Article  Google Scholar 

  5. Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In Q. Zhu, A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Germany: Springer. doi:10.1007/978-3-319-12883-21.

  6. Azar, A. T., & Serrano, F. E. (2016). Stabilization of mechanical systems with backlash by PI loop shaping. International Journal of System Dynamics Applications, 5(3), 20–47.

    Article  Google Scholar 

  7. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design (Vol. 581). Studies in computational intelligence. Germany: Springer.

    Google Scholar 

  8. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control (Vol. 575). Studies in computational intelligence. Germany: Springer. ISBN 978-3-319-11016-5.

    Google Scholar 

  9. Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR) book series. USA: IGI Global. ISBN 978-1-466-67248-2.

    Google Scholar 

  10. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing. Germany: Springer.

    Google Scholar 

  11. Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9), 802–806. doi:10.1109/TCSII.2006.879102.

    Article  Google Scholar 

  12. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in chaos theory and intelligent control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer.

    Google Scholar 

  13. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer.

    Google Scholar 

  14. Cao, J., Liang, J., & Cao, B. (2005). Optimization of fractional order PID controllers based on genetic algorithms. In 2005 International Conference on Machine Learning and Cybernetics (Vol. 9, pp. 5686–5689). doi:10.1109/ICMLC.2005.1527950.

  15. Charef, A. (2006). Analogue realization of fractional-order integrator, differentiator and fractional \(PI^\lambda D^\mu \) controller. IEE Proceedings—Control Theory and Applications, 153(6), 714–720.

    Article  Google Scholar 

  16. Chen, Y., Petras, I., & Xue, D. (2009). Fractional order control—a tutorial. In 2009 American Control Conference (pp. 1397–1411). doi:10.1109/ACC.2009.5160719.

  17. Deepak, V. D., & Kumari, U. S. (2014). Modified method of tuning for fractional PID controllers. In 2014 International Conference on Power Signals Control and Computations, EPSCICON 2014 (pp. 8–10). doi:10.1109/EPSCICON.2014.6887481.

  18. Dobra, P., Trusca, M., & Duma, R. (2012). Embedded application of fractional order control. Electronics Letters, 48(24), 1526–1528. doi:10.1049/el.2012.1829.

  19. Dorcák, L., Terpák, J., Petrá, I., Valsa, J., & González, E. (2012). Comparison of the electronic realization of the fractional-order system and its model. In Carpathian Control Conference (ICCC), 2012 13th International (pp. 119–124). doi:10.1109/CarpathianCC.2012.6228627.

  20. Herrmann, R. (2011). Fractional calculus (1st ed.). World Scientific publishing Co.

    Google Scholar 

  21. Jesus, I. S., & Tenreiro, J. A. (2009). Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 56(1–2), 45–55. doi:10.1007/s11071-008-9377-8.

  22. Khubalkar, S., Chopade, A., Junghare, A., Aware, M., & Das, S. (2016). Design and realization of stand-alone digital fractional order PID controller for buck converter fed DC motor. Circuits, Systems, and Signal Processing, 35(6), 2189–2211. doi:10.1007/s00034-016-0262-2.

  23. Krishna, B. T. (2011). Studies on fractional order differentiators and integrators: A survey. Signal Processing, 91(3), 386–426. doi:10.1016/j.sigpro.2010.06.022.

  24. Lachhab, N., Svaricek, F., Wobbe, F., & Rabba, H. (2013). Fractional order PID controller (FOPID)-toolbox. In Control Conference (ECC), 2013 European (pp. 3694–3699).

    Google Scholar 

  25. Ltifi, A., Ghariani, M., & Neji, R. (2013). Performance comparison on three parameter determination method of fractional PID controllers. In 2013 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 453–460). doi:10.1109/STA.2013.6783171.

  26. Mahmood, A. K., & Saleh, S. A. R. (2015). Realization of fractional order differentiator by analogue electronic circuit. International Journal of Advances in Engineering and Technology, 1, 1939–1951.

    Google Scholar 

  27. Marzaki, M. H., Rahiman, M. H. F., Adnan, R., & Tajjudin, M. (2015). Real time performance comparison between PID and fractional order PID controller in SMISD plant. In 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC) (pp. 141–145). doi:10.1109/ICSGRC.2015.7412481.

  28. Mehta, S., & Jain, M. (2015). Comparative analysis of different fractional PID tuning methods for the first order system. In 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE) (pp. 640–646). doi:10.1109/ABLAZE.2015.7154942.

  29. Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order systems and controls, fundamentals and applications (1st ed.). Advances in industrial control. Springer.

    Google Scholar 

  30. Nise, N. S. (2011). Control systems engineering (6th ed.). Wiley. ISBN 978-0-470-91373-4.

    Google Scholar 

  31. Ou, B., Song, L., & Chang, C. (2010). Tuning of fractional PID controllers by using radial basis function neural networks. In 2010 8th IEEE International Conference on Control and Automation (ICCA) (pp. 1239–1244). doi:10.1109/ICCA.2010.5524367.

  32. Podlubny, I. (1999). Fractional-order systems and \(PI^\lambda D^\mu \)-controllers. IEEE Transactions on Automatic Control, 44(1), 208–214. doi:10.1109/9.739144.

    Article  MathSciNet  MATH  Google Scholar 

  33. Podlubny, I., Petras, I., Vinagre, B. M., O’Leary, P., & Dorcak, L. (2002). Analogue realizations of fractional-order controllers. Nonlinear Dynamics, 29(1), 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  34. Raynaud, H. F., & Zergainoh, A. (2000). Brief state-space representation for fractional order controllers. Automatica, 36(7), 1017–1021. doi:10.1016/S0005-1098(00)00011-X.

  35. Tavazoei, M. S., & Tavakoli-Kakhki, M. (2014). Compensation by fractional-order phase-lead/lag compensators. IET Control Theory and Applications, 8(5), 319–329. doi:10.1049/iet-cta.2013.0138.

  36. Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. In Mixed Design of Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th International Conference (pp. 684–689).

    Google Scholar 

  37. Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. In Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems—MIXDES 2011 (Vol. 4, pp. 684–689).

    Google Scholar 

  38. Tepljakov, A., Petlenkov, E., & Belikov, J. (2012). A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications. In Control Conference (CCC), 2012 31st Chinese (pp. 4698–4703).

    Google Scholar 

  39. Truong, V., & Moonyong, L. (2013). Analytical design of fractional-order proportional-integral controllers for time-delay processes. ISA Transactions, 52(5), 583–591. doi:10.1016/j.isatra.2013.06.003.

    Article  Google Scholar 

  40. Valerio, D., & da Costa, J. (2006). Tuning of fractional PID controllers with Ziegler Nichols-type rules. Signal Processing, 86(10), 2771–2784. doi:10.1016/j.sigpro.2006.02.020.

  41. Valerio, D., & Da Costa, J. S. (2006). Tuning-rules for fractional PID controllers. In Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications FDA06, Porto, Portugal.

    Google Scholar 

  42. Valerio, D., & Da Costa, J. S. (2010). A review of tuning methods for fractional PIDs. In Preprints, IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain.

    Google Scholar 

  43. Varshney, P., & Gupta, S. K. (2014). Implementation of fractional Fuzzy PID controllers for control of fractional-order systems. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014 (pp. 1322–1328). doi:10.1109/ICACCI.2014.6968376.

  44. Wang, F. Y. (2003). The exact and unique solution for phase-lead and phase-lag compensation. IEEE Transactions on Education, 46(2), 258–262. doi:10.1109/TE.2002.808279.

    Article  Google Scholar 

  45. Xue, D., Liu, L., & Pan, F. (2015). Variable-order fuzzy fractional PID controllers for networked control systems. In 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) (pp. 1438–1442). doi:10.1109/ICIEA.2015.7334333.

  46. Zhong, J., & Li, L. (2015). Tuning fractional-order \(PI^\lambda D^\mu \) controllers for a solid-core magnetic bearing system. IEEE Transactions on Control Systems Technology, 23(4), 1648–1656.

    Article  Google Scholar 

  47. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. In Studies in fuzziness and soft computing (Vol. 319). Germany: Springer. ISBN 978-3-319-12882-5.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Council for Science and Technology (CONACyT), Mexico, under Grant 181201, 222843 and 237991; in part by the Universidad Autónoma de Tlaxcala (UATx), Tlaxcala de Xicothencatl, TL, Mexico, under Grant CACyPI-UATx-2015; and in part by the Program to Strengthen Quality in Educational under Grant P/PROFOCIE-2015-29MSU0013Y-02

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Tlelo-Cuautle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Muñiz-Montero, C., Sánchez-Gaspariano, L.A., Sánchez-López, C., González-Díaz, V.R., Tlelo-Cuautle, E. (2017). On the Electronic Realizations of Fractional-Order Phase-Lead-Lag Compensators with OpAmps and FPAAs. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics